如果你曾尝试自己搭建一套 RAG(检索增强生成)系统,大概深有体会:管理向量嵌入、配置向量数据库、进行文本切分,还要确保整个流程与模型顺畅协作且成本可控,过程相当繁琐。
现在,Google 用一个新工具解决了这些麻烦。
他们在 Gemini API 中悄然推出了全新的 File Search Tool,它能替你处理 RAG 流程中的所有繁重工作。你只需上传文件并提出问题,剩下的就交给它。

它是什么?
本质上,File Search 让 Gemini 能够“理解”你的数据。你可以上传 PDF、DOCX、纯文本、JSON 甚至代码文件。当你向 Gemini 提问时,它不会凭空猜测,而是会检索你上传的文件,定位相关内容,并据此生成答案。
这就像将你的私人知识库直接连接到 Gemini。你不再需要独立的向量数据库、复杂的检索管线,也无需进行任何运维。
整个过程就是:文件进,答案出。
成本低廉,令人意外
定价模式可能出乎你的意料。你无需为查询或存储付费,唯一的费用发生在索引文件时。
使用 gemini-embedding-001 模型创建向量嵌入的费用是每 100 万 tokens 0.15 美元。与使用 Pinecone 或 Weaviate 自行搭建整套管线相比,成本几乎可以忽略不计。
之后,你可以无限次地查询这些文件。
工作原理
File Search 将 RAG 流程简化到了极致,它会自动完成文件切分、生成向量嵌入、存储与检索,并将相关上下文注入到你的 Gemini 提示词中。
这一切都通过你已经在使用的 generateContent API 调用完成。
当你发起查询时,系统会在幕后使用最新的 Gemini Embedding 模型执行一次 向量搜索。这意味着它能理解“语义”,而不仅仅是匹配关键词。
更棒的是:Gemini 的回答会包含 引用,明确标注答案来源于哪个文件的具体位置。你可以点击查看以核实信息,从而无需再猜测模型是否在“幻觉”。
应用案例:Beam 的极速游戏生成
早期测试方 Phaser Studio 将 File Search 应用在了他们的 AI 驱动游戏平台 Beam 上。
他们拥有一个包含 3000 多个文件的资料库,涵盖模板、代码片段、设计文档等内部数据。File Search 让他们能够在不到 2 秒内查询整个知识库。而过去,手动查找同样的信息需要花费数小时。
他们的首席技术官 Richard Davey 总结道:
“过去需要几天才能打样的点子,如今几分钟就能上手体验。”
这相当令人震撼。
一个简短的 Python 示例
上手所需的代码并不多。请看这个简单的示例:
from google import genai
from google.genai import types
import time
client = genai.Client()
store = client.file_search_stores.create()
upload_op = client.file_search_stores.upload_to_file_search_store(
file_search_store_name=store.name,
file='path/to/your/document.pdf'
)
while not upload_op.done:
time.sleep(5)
upload_op = client.operations.get(upload_op)
response = client.models.generate_content(
model='gemini-2.5-flash',
contents='Summarize the research on sustainable AI.',
config=types.GenerateContentConfig(
tools=[types.Tool(
file_search=types.FileSearch(
file_search_store_names=[store.name]
)
)]
)
)
print(response.text)
grounding = response.candidates[0].grounding_metadata
sources = {c.retrieved_context.title for c in grounding.grounding_chunks}
print('Sources:', *sources)
流程就是这样:上传文件、提出问题、获得附带来源的答案。一切搞定。
为何重要
每个 AI 开发者都会面临一个共同问题:模型能力看似强大,却无法触及你公司的内部数据。
File Search 改变了这一点,它让 Gemini 能够在无需复杂检索系统搭建的前提下,分析 你的 内容。
如果你正在构建需要时效性或垂直领域知识的应用——例如客服机器人、内部工具或文档问答系统——这无疑是一个游戏规则的改变者。
亲自尝试
你现在就可以在 Google AI Studio 中体验 File Search。其中有一个名为 “Ask the Manual” 的演示项目——上传几份文件,提出几个问题,亲眼看看答案的溯源效果有多好。
体验之后,你可以基于此演示进行改造,或直接将其集成到你的应用程序中。
关注“鲸栖”小程序,掌握最新AI资讯
本文由鲸栖原创发布,未经许可,请勿转载。转载请注明出处:http://www.itsolotime.com/archives/13453
