模型部署

  • 8个Python库:让机器学习从入门到精通只需一杯咖啡时间

    你能在一杯咖啡还没喝完时搭建出你的第一个模型。 先说一句可能听起来有点“逆风”的话: 机器学习并不难。难的是在不必要的复杂性里摸爬滚打。 多数人被机器学习劝退,不是因为不够聪明,而是因为在他们还没开始训练模型前,整个生态就已经把微积分、矩阵符号和数千页的文档砸过来了。 在用 Python 写代码 4 年多、并教过不少开发者(包括非常资深的)之后,我得出一个结…

    2026年1月23日
    4300
  • vLLM Playground:可视化界面让大模型推理部署零门槛

    用过 vLLM 的人都知道,它功能强大,但上手门槛不低。命令行参数繁多,容器配置复杂,生产部署更是令人头疼。 今天介绍的开源项目 vLLM Playground 正是为了解决这些问题而生。它提供了一个可视化的 vLLM 管理界面,让大模型的部署和使用变得简单直观。 真正的零配置 最便捷之处在于你无需手动安装 vLLM。只需打开 Web 界面,点击“Start…

    2025年12月29日
    9600
  • Unsloth革命:手机端大模型部署实战,40-50 token/s流畅体验揭秘

    想在手机上流畅运行语言模型?过去常常面临速度缓慢或精度严重下降的困境。现在,借助Unsloth发布的完整教程,可以将其平台微调的模型直接部署到Pixel 8和iPhone 15 Pro等设备上。 其核心技术是Meta应用于Instagram和WhatsApp的ExecuTorch。该技术专为移动端优化,能够充分利用ARM处理器的NEON指令集,并调用手机NP…

    2025年12月21日
    11800
  • ELANA:无需代码修改的LLM能效与延迟分析利器,精准评测每token能耗与三维延迟

    ELANA: A Simple Energy and Latency Analyzer for LLMs https://arxiv.org/pdf/2512.09946 https://github.com/enyac-group/Elana 大型语言模型(LLM)在各类硬件平台部署时,延迟与能耗是核心约束 ,而 现有评测工具缺乏统一、轻量化的 LLM 专…

    2025年12月21日
    12000
  • DeepSeek爆火背后的安全隐忧:从模型下载到部署运营的全链路风险剖析

    近几个月,国产开源大模型DeepSeek凭借“小参数、高性能”的显著优势迅速席卷市场,引发了企业私有化部署需求的激增。然而,在这股AI应用热潮的背后,却暗藏着不容忽视的安全风险。最新数据显示,高达88.9%的企业在部署AI服务器时未采取任何基础安全措施,而像Ollama这类默认未启用安全认证的流行框架,更使得企业服务器如同“大门敞开”,暴露于多重威胁之下。本…

    2025年3月10日
    11500