Agentic AI
-
构建可扩展、生产级的 Agentic RAG Pipeline:分层架构与六层核心设计详解
面向大型数据集、符合行业标准的 Agentic RAG Pipeline 需要基于清晰、可扩展的分层架构进行构建。我们将系统结构化,使得 Agent 能够并行地进行推理、获取上下文、使用工具以及与数据库交互。每一层都承担明确的职责,涵盖从数据摄取、模型服务到 Agent 协调的全过程。这种分层方法有助于系统实现可预测的扩展,同时为终端用户保持较低的响应延迟。…
-
Agent Skills:解锁AI Agent从“思考”到“行动”的关键能力层
为什么说它是 Agentic AI 真正“能干活”的关键 导语|为什么你的 Agent “看起来很聪明,却干不了事”? 许多开发者在初次构建 AI Agent 时,常会遇到一个典型困境: 👉 模型本身能力很强,擅长推理与对话,但一旦接入真实业务场景就频频“卡壳” 其根本原因往往不在于模型本身,而在于——未能真正理解并构建起 Agent Skills(智能体技…
-
生产级 Agentic AI 系统的 7 层架构详解
现代的代理型 AI 系统,无论是运行在开发、预发布还是生产环境中,都应构建为一组职责明确的架构层,而非单一服务。每一层分别负责代理编排、记忆管理、安全控制、可扩展性、故障处理等具体关注点。一个面向生产的代理系统通常会组合这些层,以确保在真实工作负载下具备可靠性、可观测性与安全性。 Production Grade Agentic System (Create…
-
周末实战:7个可上线级Agentic AI项目,助你打造高含金量作品集
大家都在谈论自主 AI 智能体,仿佛它们只属于研究实验室和大型科技公司。但事实并非如此。到 2025 年,构建可用于生产环境的 Agentic AI 系统已经变得异常容易——而这正是招聘经理最希望看到的技能。 当其他人还在制作简单的 ChatGPT 封装应用时,你可以构建真正具备决策、工具使用、上下文记忆与协作能力的智能体系统。这些不仅仅是演示,而是能够展示…
-
周末实战:7个可上线级Agentic AI项目,助你打造工程实力作品集
停止只读关于 Agentic AI 的文章,开始动手构建吧。 大家都在谈论 autonomous AI agents,好像它们只属于研究机构和科技巨头。并不是这样。到了 2025 年,构建可用于生产的 Agentic AI 系统已经变得意外地容易——而这正是招聘经理最想看到的。 当别人还在做简单的 ChatGPT wrappers(简单封装)时,你可以构建真…
-
周末实战:5个能放进作品集的Agentic AI项目,助你求职脱颖而出
人们常把“Agentic AI”描绘成只有大型实验室才能驾驭的高深技术。事实并非如此。 你完全可以在几天内,构建出真正能放进作品集的智能体项目。这些项目能解决实际问题,从而在求职时为你加分,而不是只会运行花哨提示词的玩具。 这里有五个你马上就可以动手实践的项目,即使你只有一台在卧室里、电量只剩一半的笔记本电脑。 我们将通过简单的示例逐一讲解,让你看清各个组件…
-
解锁Agentic AI并行化:14个核心模式提升系统可靠性与性能
构建高效的智能体(Agentic)系统,离不开扎实的软件工程实践。其核心在于设计能够协调运作、并行执行,并能与外部系统高效交互的组件。例如,推测执行(Speculative Execution) 通过预先处理可预测的请求来降低延迟;冗余执行(Redundant Execution) 则通过同时运行同一智能体的多个副本来避免单点故障,提升系统韧性。除此之外,还…
-
SWE-Bench:从1.96%到72.8%,AI编程能力的革命性突破与未来展望
2024年初,最先进的AI模型仅能解决不到2%的真实世界编程问题。如今,这一数字已飙升至72.8%。实现这一革命性突破的关键,是普林斯顿大学与芝加哥大学联合发布、发表于ICLR 2024的基准测试——SWE-bench(《SWE-bench: Can Language Models Resolve Real-World GitHub Issues?》)。 一…
-
LangGraph实战:单智能体与多智能体系统的性能对比与架构解析
在 LangGraph 中基于结构化数据源构建 在 LangGraph 中构建不同的 agent 系统 | Image by author 对于希望构建不同智能体系统的开发者而言,一个有效的切入点是深入比较单智能体工作流与多智能体工作流,这本质上是评估系统设计的灵活性与可控性之间的权衡。 本文旨在阐明 Agentic AI 的核心概念,并演示如何利用 Lan…
-
吴恩达深度解析:Agent落地最大瓶颈非技术,人才储备成决胜关键
如果说两年前AI圈的主旋律是LLMs(大语言模型),那今年Agent无疑成为了最吸睛的技术方向。不过,当概念定义混乱、技术路径尚未成体系的当下,真正能讲清Agentic AI究竟是什么、会带来什么影响的人并不多。 最近,吴恩达在接受硅谷投资人Elad Gil与Sarah Guo的访谈时,深入探讨了智能体AI的崛起及其对行业的深远影响。这位AI领域的资深专家不…