LangGraph
-
从零构建高级AI Agent:Python实战指南与架构设计解析
如果你问我2026年学习AI Agent的最佳方式是什么,我会说:绝对是从零自己动手构建。这不仅对学习至关重要,如果你要打造一个高效、个性化且健壮的生产级AI Agent,从零开始往往是最佳选择。例如,你能找到的所有代码生成Agent(如Claude Code、Codex、Cursor等),都是基于其产品需求定制架构构建的。 当然,这并非否定现有框架的价值。…
-
LangGraph 2026版:从核心概念到实战,构建自适应AI Agents的完整指南
用 LangGraph 构建 AI Agents(2026 版):保姆级指南 过去两年里,LangGraph 已成为我在 AI 领域构建各类应用的核心工具。无论是聊天机器人、MCP助手、语音机器人还是内部自动化智能体,只要涉及推理、工具调用或多步骤工作流,我几乎都会选择 LangGraph。它反复出现在我的客户项目、个人实验乃至日常的生产系统中。 去年我撰写…
-
构建可扩展、生产级的 Agentic RAG Pipeline:分层架构与六层核心设计详解
面向大型数据集、符合行业标准的 Agentic RAG Pipeline 需要基于清晰、可扩展的分层架构进行构建。我们将系统结构化,使得 Agent 能够并行地进行推理、获取上下文、使用工具以及与数据库交互。每一层都承担明确的职责,涵盖从数据摄取、模型服务到 Agent 协调的全过程。这种分层方法有助于系统实现可预测的扩展,同时为终端用户保持较低的响应延迟。…
-
React与LangGraph的无缝连接:useAgent Hook实现全栈AI Agent实时交互
AI agent 正在迅速从令人惊叹的演示演进到大规模的生产级应用,而 LangGraph 让这一转变比以往更顺畅。但在此之前,将这些 agent 连接到前端并为用户提供实时交互,往往需要处理复杂的 API、状态管理,并依赖一定的运气。 现在介绍 useAgent —— 一个简单的 React Hook,能让你的前端直接连接到 LangGraph agent…
-
周末实战:7个可上线级Agentic AI项目,助你打造工程实力作品集
停止只读关于 Agentic AI 的文章,开始动手构建吧。 大家都在谈论 autonomous AI agents,好像它们只属于研究机构和科技巨头。并不是这样。到了 2025 年,构建可用于生产的 Agentic AI 系统已经变得意外地容易——而这正是招聘经理最想看到的。 当别人还在做简单的 ChatGPT wrappers(简单封装)时,你可以构建真…
-
从理论到实践:使用Model Context Protocol构建多工具AI代理的完整指南
类比 我们都熟悉《Kaun Banega Crorepati(KBC)》节目中的“Phone a Friend(打电话求助)”环节。这是印度版的《Who Wants to Be a Millionaire?》。 现在,想象一下如果 KBC 节目诞生于“电话尚未发明”的时代。 在没有电话的世界里:如果节目想让选手“打电话”求助朋友,就必须为每一位求助的朋友进行…
-
LangGraph实战:构建高效Agentic工作流,解锁AI应用开发新范式
用 Agentic 框架构建 AI 工作流 随着 GPT-5、Gemini 2.5 Pro 等强大 AI 模型的涌现,旨在高效利用这些模型的 Agentic 框架也日益增多。这类框架通过抽象化诸多复杂环节,极大地简化了与 AI 模型的协作,例如处理工具调用、管理智能体状态以及集成人工反馈循环。 本文将深入探讨其中一个可用的 Agentic AI 框架:Lan…
-
构建可自我进化的Agentic RAG系统:从医疗健康领域实践到通用设计模式
Agentic RAG 系统可以被视为一个高维度的决策空间,其中每个维度都对应一项关键设计选择,例如提示工程、智能体协同机制或检索策略。手动调整这些维度以找到最优组合不仅极其困难,而且系统上线后遇到的未知数据也常常会打破在测试环境中有效的配置。 因此,一个更优的解决方案是让系统具备“自我优化”的能力。一条典型的、可自我进化的 Agentic RAG 流水线遵…
-
LangGraph实战:单智能体与多智能体系统的性能对比与架构解析
在 LangGraph 中基于结构化数据源构建 在 LangGraph 中构建不同的 agent 系统 | Image by author 对于希望构建不同智能体系统的开发者而言,一个有效的切入点是深入比较单智能体工作流与多智能体工作流,这本质上是评估系统设计的灵活性与可控性之间的权衡。 本文旨在阐明 Agentic AI 的核心概念,并演示如何利用 Lan…