大模型工程

  • UltraRAG 3.0重磅发布:可视化白盒框架,让RAG开发从数月缩短至一周

    “验证算法原型只需一周,构建可用系统却耗时数月。” 这句看似调侃的“吐槽”,却是每一位算法工程师不得不面对的真实困境。 今天,清华大学 THUNLP 实验室、东北大学 NEUIR 实验室、OpenBMB 、面壁智能与 AI9Stars 联合发布 UltraRAG 3.0。 针对上述痛点,为科研工作者与开发者打造更懂开发者的技术框架,具备 3 大核心优势: 从…

    大模型工程 2026年1月23日
    4600
  • 千问AI Agent:从对话到任务执行的革命性跃迁,揭秘其核心技术架构与生态协同

    引言:一场人机交互的革命性跃迁 2026年1月15日,阿里旗下千问APP的重磅升级,为全球人工智能产业投下了一颗“重磅炸弹”。当日,千问APP正式上线全新AI Agent功能——“任务助理”,全面接入淘宝、支付宝、飞猪、高德等阿里系生态内超400项服务功能,在全球范围内首次实现点外卖、网络购物、机票预订等AI购物功能的全量用户开放测试。 这一举措不仅让千问A…

    2026年1月21日
    11800
  • 吴恩达新课程:Agent文档提取技术,OCR准确率达99.15%的智能工作流

    OCR技术迎来AI新浪潮:从文字识别到智能体文档提取 你懂OCR吗?在2025年之前,这或许只是一个关于文字识别的技术问题。但进入2025年,随着AI大模型在架构、记忆、存储等领域的深度创新,OCR技术本身正经历一场深刻的范式变革,重新成为各大科技公司竞相投入的技术专项。 从DeepSeek、智谱AI,到阿里千问、腾讯混元,行业领先者纷纷发布了其最新的OCR…

    2026年1月16日
    7900
  • 劈开教育“不可能三角”:揭秘AI名师如何实现千人千面个性化教学

    教育领域正迎来一个AI应用新物种—— 其讲课节奏、语气与互动,都展现出高度的自然感。 更重要的是,它不仅能“像老师一样讲课”,还能为每一位学员提供一对一的个性化教学。 这位AI导师,出自一家名为“与爱为舞”的AI原生应用企业。自年初上线以来,已累计为百万级用户提供学习陪伴与一对一讲解服务。 教育行业,向来是一个“规模、质量、成本”的不可能三角。 既要实现千人…

    2025年12月30日
    11100
  • A2UI协议:开启AI原生交互新时代,让智能体“说”出动态界面

    Google 最近开源了一个名为 A2UI 的项目,旨在解决一个实际问题:AI 智能体如何安全地生成丰富的用户界面? 传统上,智能体只能返回文本,用户需要通过多轮对话才能完成任务。而 A2UI 允许智能体直接生成表单、按钮、日期选择器等交互式组件,用户只需点击几下即可完成操作。 从固定界面到动态生成的转变 传统的智能体交互主要基于文字聊天——用户提问,AI …

    2025年12月25日
    28000
  • LangGraph实战:构建高效Agentic工作流,解锁AI应用开发新范式

    用 Agentic 框架构建 AI 工作流 随着 GPT-5、Gemini 2.5 Pro 等强大 AI 模型的涌现,旨在高效利用这些模型的 Agentic 框架也日益增多。这类框架通过抽象化诸多复杂环节,极大地简化了与 AI 模型的协作,例如处理工具调用、管理智能体状态以及集成人工反馈循环。 本文将深入探讨其中一个可用的 Agentic AI 框架:Lan…

    2025年11月21日
    9000
  • Context Window终极掌控指南:如何避免AI编码代理的“健忘症”与性能下滑

    Context Window 终极掌控指南 关于AI编码代理(coding agents)的讨论往往两极分化。一方认为“AI编码糟透了,我试过,没用”,另一方则反驳“不,是你用错了,这是技能问题”。 双方都有一定道理。但对于大多数开发者而言,在使用AI编码代理时最容易“翻车”的技能问题,往往源于对Context Window的理解不足——这是决定编码代理如何…

    2025年11月11日
    8700
  • LLM 大模型工程师:AI 时代的弄潮儿

    随着 LLM 技术的不断发展和突破,LLM 大模型工程师这一新兴职业应运而生,他们正成为推动 AI 进步的关键力量,对于传统软件工程师来说,了解并迈向这一领域,或许将开启一段充满机遇与挑战的职业新征程。

    2025年10月2日
    41900
  • 企业推进大模型落地的关键工程与核心指标

    企业推进大模型落地,需统筹五大关键工程:算力工程是基础设施,关注规模、效率与服务;应用工程是价值门户,衡量业务覆盖与成效;模型工程是技术核心,驱动算法效能与迭代;知识工程是企业智库,负责知识的沉淀与复用;数据工程是循环血脉,确保数据的贯通与消费。五者协同,方能实现真正的业务智能化。

    2025年10月2日
    37300