微软Re-TRAC框架:让AI智能体记住失败经验,4B模型性能超越大模型

想象一下,你让 AI 助手结合搜索工具探索一个复杂问题。它第一次探索时走错了方向,但第二次、第三次,它依然重复同样的错误探索路径。虽然你可能可以从最终得到的多次探索结果中挑选出一个勉强满意的答案,但是这既低效,也需要人工干预。这就是当前大多数深度搜索智能体面临的困境——它们无法「记住」之前的探索经验,每次都是从头开始,导致大量冗余搜索和资源浪费。

现有的深度搜索智能体大多基于 ReAct 框架构建,采用线性推理方式:「思考→调用工具→观察→再思考」。这种设计在简单任务上表现良好,但在需要多轮探索的深度搜索任务中,往往陷入局部最优、重复探索和低效搜索的困境。

来自东南大学、微软亚洲研究院等机构的研究团队提出了一种全新的解决方案—— Re-TRAC (REcursive TRAjectory Compression),这个框架让 AI 智能体能够「记住」每次探索的经验,在多个探索轨迹之间传递经验,实现渐进式的智能搜索。

微软Re-TRAC框架:让AI智能体记住失败经验,4B模型性能超越大模型
  • 论文标题: RE-TRAC: REcursive TRAjectory Compression for Deep Search Agents
  • 论文链接: https://arxiv.org/abs/2602.02486
  • 项目链接: https://github.com/microsoft/InfoAgent

让探索变成「渐进式学习」过程

为什么 ReAct 会失败?

ReAct 框架的核心问题在于其线性设计。每个探索轨迹都是独立的,模型无法回顾先前尝试的状态。在长上下文场景下,早期制定的计划逐渐被遗忘,关键线索被埋没。

研究团队通过深入分析发现,现有深度搜索模型即使经过大量强化学习训练,其 Pass@K 性能仍远高于 Pass@1。这意味着模型本身具备解决问题的推理能力潜能,问题在于受限于上下文长度限制,单次探索难以生成足够多样的探索路径,无法覆盖足够宽广的搜索空间。

Re-TRAC:递归式轨迹压缩

Re-TRAC 的核心思想是将探索从一系列独立尝试转变为渐进式学习过程。具体而言,在每个探索轨迹结束时生成一个结构化的状态表示,针对深度搜索任务,记录以下三个维度的信息:

  • 答案与分析结论:当前可能性最高的答案与其关键推理结果——为后续推理提供锚点。
  • 证据库与来源验证:已搜集到的证据及其来源,并标记哪些已被查阅、已被验证——避免冗余的工具调用和重复检查。
  • 不确定项与待探索方向:现阶段需要继续探索验证的角度、曾被遗漏的候选探索分支与曾因失败放弃的探索方向;帮助模型在下一轮中补全未探索的搜索空间。

这个结构化状态将被添加到下一轮探索的输入中,确保智能体在每轮新尝试开始时,都能清楚地了解什么已被验证、什么仍未解决,以及应该将探索重点放在哪里。

微软Re-TRAC框架:让AI智能体记住失败经验,4B模型性能超越大模型

小模型也能「以小博大」

研究团队在五个具有挑战性的搜索导向基准上评估了 Re-TRAC:BrowseComp、BrowseComp-ZH、XBench、GAIA 和 HLE。

微软Re-TRAC框架:让AI智能体记住失败经验,4B模型性能超越大模型

4B 模型性能 SOTA

RE-TRAC-4B 在所有小于 15B 参数的基线中表现最佳:

  • BrowseComp 上达到 30.0% 的准确率;
  • BrowseComp-ZH 上达到 36.1%;
  • GAIA 上达到 70.4%;
  • XBench 上达到 76.6%;
  • HLE 上达到 22.2%。

更令人惊讶的是,这个仅 4B 参数的模型在多个基准上超越了更大规模的模型。

  • XBench 基准上,RE-TRAC-4B 的 76.6% 准确率不仅远超 InfoAgent-14B 的 40.4%(提升了近 90%),也超过了 NestBrowse-4B 的 74.0%。
  • GAIA 基准上,RE-TRAC-4B 的 70.4% 准确率超过了 AgentCPM-Explore-4B 的 63.9% 和 NestBrowse-4B 的 68.9%。

30B 模型的进一步突破

RE-TRAC-30B 同样表现出色,在除 HLE 外的所有基准上都击败了 MiniMAX-M2-229B。

  • BrowseComp 上,其准确率达到 53%,甚至超过了 GLM-4.7-358B 的 52%。
  • GAIA 上,RE-TRAC-30B 击败了所有闭源模型,在 BrowseComp 和 BrowseComp-ZH 上排名第二。

这些结果说明,通过轨迹压缩与跨轮次信息传递,小模型在资源受限场景下也能获得接近甚至超过更大模型的效果。

更少的消耗、更高的性能的通用拓展

Re-TRAC 不仅可以通过训练提升小模型性能,还可以作为无需训练的测试扩展直接应用于前沿模型。

研究团队在 o4-mini、o3、GPT-5、DeepSeek-V3.2、GLM-4.7 和 MiniMax-M2.1 上实现了 Re-TRAC 框架,并与多数投票(Majority Voting)、加权投票(Weighted Voting)和最佳选择(Best-of-N)等方法进行了对比。

微软Re-TRAC框架:让AI智能体记住失败经验,4B模型性能超越大模型

结果显示,Re-TRAC 在所有模型上都达到了最佳或具有竞争力的性能。在 BrowseComp300 子集上:

  • o4-mini 通过 Re-TRAC 从 25.7% 提升到 46.8%;
  • o3 从 54.9% 提升到 69.8%;
  • GPT-5-medium 从 48.3% 提升到 66.6%;
  • DeepSeek-V3.2 从 45.3% 提升到 60.8%;
  • GLM-4.7 从 37.7% 提升到 60.7%。

在传统框架中,由于轨迹相互独立,资源使用量通常随扩展近似线性增长。Re-TRAC 会继承之前轮次的状态,使搜索空间逐步收敛,从而减少冗余工具调用与重复探索,提升探索的效率。

技术细节:如何训练 Re-TRAC 模型

研究团队开发了一种后训练方法,构建了基于结构化状态表示的监督微调(SFT)数据。训练数据通过实体树方法构建:从维基百科收集大量实体作为树根,然后递归搜索相关实体作为子节点,直到树达到预定义深度。

通过选择从根到叶节点的路径并将边转换为子问题,团队合成了 33K 个问答对。然后,收集 GLM-4.7 在这些合成问题上的 Re-TRAC(4 轮)轨迹,经过过滤后得到 104k 个训练样本,用于训练 RE-TRAC-4B 和 RE-TRAC-30B 模型。

实验结果显示,经过 SFT 训练后,Qwen3-4B-Instruct 在 BrowseComp 上的准确率从 2.7% 大幅提升到 30.0%,在 BrowseComp-ZH 上从 6.9% 提升到 36.1%,在 GAIA 上从 24.4% 提升到 70.4%,在 XBench 上从 45.0% 提升到 76.6%。

这表明通过简单的 SFT 训练,配合 Re-TRAC 框架,可以产生强大的搜索智能体,实现与通过大规模强化学习训练的模型相当甚至更好的性能。

优化 ReAct 的搜索框架,让小模型跑出大模型表现

Re-TRAC 可以看作是针对深度搜索任务优化过的 ReAct 框架:在原有「思考→调用工具→观察→再思考」的范式上,引入了跨轮次的轨迹压缩和结构化状态表示,让智能体在开放网络检索、复杂信息汇总等场景中不再「从零开始」,而是像人一样复用既有证据、总结失败教训并规划未来方向。

更重要的是,这种有针对性的框架设计让小模型也能跑出大模型级别的效果,为资源受限场景(如边缘设备、本地部署)提供了一条「用小模型做大事」的现实路径。


关注“鲸栖”小程序,掌握最新AI资讯

本文来自网络搜集,不代表鲸林向海立场,如有侵权,联系删除。转载请注明出处:https://www.itsolotime.com/archives/21979

(0)
上一篇 1天前
下一篇 1天前

相关推荐

  • 开源多模态推理新突破:MMFineReason框架以4B参数逆袭30B模型,开启数据驱动的高效推理时代

    长期以来,开源多模态模型在复杂推理任务上,始终与 GPT-4o、Gemini 等顶尖闭源模型存在一道难以逾越的鸿沟。 社区开发者们逐渐意识到,核心痛点或许不在于模型架构的精进或者模型参数的规模。真正的瓶颈,在于高质量、思维链(CoT)密集的推理数据极度匮乏。 在纯文本领域,DeepSeek-R1 的成功已验证了高质量后训练数据(Post-training D…

    2026年2月13日
    8300
  • OpenAI o1突破语言理解极限:首次展现匹敌人类语言学家的元分析能力

    导读:LLM再下一城!伯克利研究证明,OpenAI的o1展现出匹敌人类语言学家的元分析能力。 在人类诸多才能中,语言常被视为最独特的标志。自亚里士多德将人定义为“具有语言的动物”以来,这一观点便深入人心。 尽管当前的大语言模型(如ChatGPT)已能流畅地进行日常对话,但一个根本性问题依然存在:人类语言的深层结构与特质,是否超越了AI的运算体系? 为了探究这…

    2025年11月8日
    13500
  • 突破多GPU性能瓶颈:Triton与Iris融合通信计算,重塑分布式大模型推理新范式

    关键词:大型语言模型、多 GPU 分布式执行 、 细粒度融合 、三税分析框架 、Triton、 跨 GPU 通信 Eliminating Multi-gpu Performance Taxes: A Systems Approach to Efficient Distributed LLMs https://arxiv.org/pdf/2511.02168v…

    2025年12月21日
    14200
  • Unsloth革命:手机端大模型部署实战,40-50 token/s流畅体验揭秘

    想在手机上流畅运行语言模型?过去常常面临速度缓慢或精度严重下降的困境。现在,借助Unsloth发布的完整教程,可以将其平台微调的模型直接部署到Pixel 8和iPhone 15 Pro等设备上。 其核心技术是Meta应用于Instagram和WhatsApp的ExecuTorch。该技术专为移动端优化,能够充分利用ARM处理器的NEON指令集,并调用手机NP…

    2025年12月21日
    17300
  • LLM推理优化全景图:从基础设施到模型算法的全栈工程实践

    本文基于真实的企业级AI平台研发与实践经验,首次以“系统分层、功能解耦”的架构思想,自底向上地呈现一幅完整的LLM推理优化全景图。文章详细剖析了从基础设施层(GPU集群、高速网络、存储加速)的硬件基石,到平台与调度层(Kubernetes、高级调度器、KServe)的资源管理中枢,再到服务与容器层的微观优化,以及AI网关层作为智能流量枢纽的核心能力。最终,深入探讨了推理引擎与算法层的核心优化技术,包括KV缓存管理、连续批处理、模型压缩及创新的Prefill/Decode分离架构。

    2025年10月2日
    64112