单步推理
-
何恺明团队颠覆生成模型范式:漂移模型实现单步推理,告别迭代训练
训练生成模型是一项复杂的任务。 从底层逻辑看,生成模型是一个逐步拟合的过程。与常见的判别模型不同,判别模型关注将单个样本映射到对应标签,而生成模型则关注从一个分布映射到另一个分布。 以大家熟悉的扩散模型为例,扩散模型及其基于流的对应方法,通常通过微分方程(随机微分方程 SDE 或常微分方程 ODE)来刻画从噪声到数据的映射。然而,训练扩散模型耗时费力,其核心…
训练生成模型是一项复杂的任务。 从底层逻辑看,生成模型是一个逐步拟合的过程。与常见的判别模型不同,判别模型关注将单个样本映射到对应标签,而生成模型则关注从一个分布映射到另一个分布。 以大家熟悉的扩散模型为例,扩散模型及其基于流的对应方法,通常通过微分方程(随机微分方程 SDE 或常微分方程 ODE)来刻画从噪声到数据的映射。然而,训练扩散模型耗时费力,其核心…