谷歌Gemini生态全面升级:Deep Research智能体与Interactions API重塑AI研究范式

近日,谷歌在AI领域展开了一系列重要更新,不仅正式发布了增强版的Gemini Deep Research智能体,还配套推出了DeepSearchQA基准测试集以及全新的Interactions API。这一系列动作标志着谷歌正在加速构建更强大、更完整的Gemini生态系统,旨在提升AI在复杂信息检索与分析任务中的表现,特别是在减少幻觉、增强多步骤推理能力方面取得了显著进展。

谷歌Gemini生态全面升级:Deep Research智能体与Interactions API重塑AI研究范式

增强版的Gemini Deep Research基于Gemini 3 Pro构建,专门针对幻觉问题进行了优化。在复杂信息检索与分析任务中,该智能体展现出了领先的性能。谷歌计划将其集成到多个核心产品中,包括谷歌搜索、NotebookLM、Google Finance以及升级版的Gemini App,这将极大地提升这些工具的研究能力和用户体验。

谷歌Gemini生态全面升级:Deep Research智能体与Interactions API重塑AI研究范式

为了更全面地评估深度搜索与研究任务的性能,谷歌推出了DeepSearchQA基准测试集。这一测试集的发布填补了现有基准在衡量真实场景下多步骤网络研究复杂特性方面的不足。DeepSearchQA包含了来自17个领域的900个手工设计的因果链任务,要求模型必须生成详尽的答案集合,从而能够更准确地评估智能体在多步推理与信息融合中的综合能力。

谷歌Gemini生态全面升级:Deep Research智能体与Interactions API重塑AI研究范式

与此同时,谷歌发布了Interactions API,为开发者提供了与Gemini 3 Pro和Deep Research智能体交互的统一接口。随着模型功能的不断拓展,AI能力逐渐从单纯的无状态文本生成转向更复杂的思考和高级工具使用。原有的generate Content接口在面对新的交互模式时逐渐显得力不从心,如果强行将新功能融入其中,会使API变得过于脆弱。

谷歌Gemini生态全面升级:Deep Research智能体与Interactions API重塑AI研究范式

Interactions API通过设计原生接口,提供了一个统一的RESTful端点。开发者只需指定模型或智能体参数,就能与模型和智能体进行复杂上下文的交互。这一接口特别适合需要多步骤推理、工具调用以及长程任务执行的场景,为构建更智能的应用提供了强大支持。

谷歌Gemini生态全面升级:Deep Research智能体与Interactions API重塑AI研究范式

增强版的Gemini Deep Research最引人注目的能力之一是迭代式推理。该智能体不仅能提出查询需求,还能读取和整合搜索结果,发现知识空白,然后针对性地开展新一轮搜索。通过这种循环式操作,它大幅提升了网络搜索能力,能够深入网站抓取精确信息。有网友已经尝试使用新的智能体构建论文生成器,初步效果令人鼓舞。

谷歌Gemini生态全面升级:Deep Research智能体与Interactions API重塑AI研究范式

这种迭代推理能力使Gemini Deep Research在复杂研究任务中表现出色。在人类最后的考试HLE、BrowseComp以及DeepSearchQA等测试中,该智能体刷新了SOTA成绩,证明了其在多步骤推理和信息整合方面的优势。

谷歌Gemini生态全面升级:Deep Research智能体与Interactions API重塑AI研究范式

DeepSearchQA基准测试集的设计理念值得深入探讨。传统的事实检索测试往往难以体现真实研究场景的复杂性,而DeepSearchQA通过因果链任务的设计,要求模型不仅要找到相关信息,还要理解信息之间的逻辑关系,并生成连贯、详尽的答案。这种评估方式更接近人类研究者的实际工作流程,能够更真实地反映AI在研究任务中的实际能力。

谷歌Gemini生态全面升级:Deep Research智能体与Interactions API重塑AI研究范式

Interactions API的推出代表了AI开发接口的重要演进。它不仅扩展了generate Content的核心能力,还具备服务器端状态可选、可解释且可组合的数据模型、后台执行以及远程MCP工具支持等特性。这些功能使得Interactions API能够更好地支持复杂的工作流,简化开发过程,更加适配现代开发环境的需求。

谷歌Gemini生态全面升级:Deep Research智能体与Interactions API重塑AI研究范式

总体来看,谷歌的这一系列更新不仅仅是单个产品的升级,更是整个Gemini生态系统的重要演进。从智能体能力的提升到基准测试的完善,再到开发接口的优化,谷歌正在构建一个更加完整、强大的AI研究与应用平台。随着这些新功能逐步集成到谷歌的核心产品中,我们有理由期待AI在研究、分析和信息处理方面将发挥更加重要的作用,推动整个行业向更智能、更高效的方向发展。


关注“鲸栖”小程序,掌握最新AI资讯

本文由鲸栖原创发布,未经许可,请勿转载。转载请注明出处:http://www.itsolotime.com/archives/7107

(0)
上一篇 2025年12月12日 上午11:07
下一篇 2025年12月12日 下午2:18

相关推荐

  • 图灵奖得主Yann LeCun离职Meta创业:以世界模型推动高级机器智能革命

    近日,人工智能领域的标志性人物、图灵奖得主Yann LeCun宣布将在年底离开Meta,并创立一家专注于高级机器智能(Advanced Machine Intelligence,AMI)的初创公司。这一消息在科技界引发广泛关注,不仅因为LeCun作为深度学习先驱的行业地位,更因为其新公司的目标直指AI发展的核心挑战——构建能够理解物理世界、具备持久记忆和复杂…

    2025年11月20日
    500
  • 开源模型首夺国际物理奥赛金牌!上海AI Lab打造235B参数模型超越GPT-5与Grok-4

    上海AI Lab研发的开源模型P1-235B-A22B在国际物理奥林匹克竞赛(IPhO)中首次达到金牌分数线,并在涵盖全球13项顶级赛事的HiPhO基准测试中以12金1银的成绩与谷歌Gemini-2.5-Pro并列第一,超越GPT-5与Grok-4。该成果依托多阶段强化学习训练与协同进化多智能体系统PhysicsMinions,标志着开源模型在复杂物理推理能力上实现重要突破。

    2025年10月25日
    19700
  • 国产AI实现空间智能突破:SenseNova-SI超越国际顶尖模型,揭示AI技术范式变革

    空间智能领域迎来里程碑:SenseNova-SI实现全面超越 在空间智能这一前沿研究领域,一项重要进展近日引发行业关注。商汤科技发布的开源模型SenseNova-SI,在多项关键能力评估中超越了李飞飞团队研发的Cambrian-S模型,标志着国产AI技术在该领域取得突破性进展。 从空间感知能力的综合评估数据来看,SenseNova-SI在多个维度上的表现均优…

    20小时前
    800
  • FeRA:从频域第一性原理出发,实现扩散模型动态参数高效微调

    在大模型时代,参数高效微调(PEFT)已成为将Stable Diffusion、Flux等大规模扩散模型迁移至下游任务的标准范式。从LoRA到DoRA,社区不断探索如何用更少的参数实现更好的适配。然而,现有微调方法大多采用“静态”策略:无论模型处于去噪过程的哪个阶段,适配器的参数都是固定不变的。这种“一刀切”的方式忽略了扩散生成过程内在的时序物理规律,导致模…

    AI产业动态 2025年12月12日
    300
  • 智源研究院:以“安卓”模式破局具身智能数据孤岛,引领行业生态共建新范式

    在2025年智源具身智能Open Day活动中,一场被业界称为“具身武林大会”的盛会,罕见地聚集了银河通用、智元、星海图、自变量、原力灵机、加速进化、北京人形、星源智、优必选、因时、软通天擎等机器人领域的主要厂商代表。这一现象背后,折射出当前具身智能产业面临的核心挑战与转型契机。 智源研究院院长王仲远在会上提出的“数据贡献与模型效用正向关联”机制,直指行业长…

    2025年11月21日
    200

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注