动态令牌压缩
-
CompTrack:基于信息瓶颈的动态压缩范式,为具身智能开启高效AI新篇章
在机器人与具身智能领域,Transformer模型正变得越来越通用,同时也越来越“重”。我们渴望获得SOTA精度,但现实世界的边缘设备(如机器人端场景)却难以承受其高昂的计算成本和延迟。 由东南大学、中南大学、明略科技联合提出、被AAAI 2026接收为Oral的论文CompTrack,为“Efficient AI”的核心挑战——“模型是否真的需要处理所有输…
在机器人与具身智能领域,Transformer模型正变得越来越通用,同时也越来越“重”。我们渴望获得SOTA精度,但现实世界的边缘设备(如机器人端场景)却难以承受其高昂的计算成本和延迟。 由东南大学、中南大学、明略科技联合提出、被AAAI 2026接收为Oral的论文CompTrack,为“Efficient AI”的核心挑战——“模型是否真的需要处理所有输…