可解释AI

  • OpenAI突破性研究:稀疏模型为AI可解释性开辟新路径

    在人工智能技术快速发展的今天,大语言模型已成为推动科技进步的核心引擎。然而,这些模型普遍存在的“黑箱”特性,使得研究人员难以深入理解其内部决策机制。这种透明度的缺失不仅限制了模型的可靠性评估,更在医疗诊断、金融风控等关键应用场景中埋下了潜在风险。OpenAI最新发布的研究成果,通过训练稀疏模型探索机械可解释性,为解决这一根本性挑战提供了创新性的技术路径。 可…

    2025年11月14日
    400
  • 阿里巴巴「3A」协同优化框架:以异步架构、非对称PPO与注意力机制重塑RL4LLM高效训练范式

    近期,阿里巴巴ROLL团队(淘天未来生活实验室与阿里巴巴智能引擎团队)联合上海交通大学、香港科技大学推出的「3A」协同优化框架,标志着强化学习在大语言模型(RL4LLM)领域迈入高效、精细与可解释的新阶段。该框架并非孤立技术堆砌,而是通过Async架构(异步训练)、Asymmetric PPO(非对称PPO)与Attention机制(基于注意力的推理节奏)的…

    2025年11月10日
    400
  • Open-o3 Video:首个显式时空证据嵌入的视频推理开源模型,实现有迹可循的AI视觉思考

    在人工智能的多模态浪潮中,视频理解因其同时承载时间动态与空间交互的复杂性,始终被视为最具挑战性的任务之一。传统模型虽能回答“发生了什么”,却难以精准指出事件“何时何地”发生,其推理过程往往如同黑箱,缺乏可解释的视觉证据支撑。近日,来自北京大学与字节跳动的联合研究团队,正式推出了首个将显式时空证据嵌入视频推理全过程的开源模型——Open-o3 Video。这一…

    2025年11月5日
    300