可重现性

  • vLLM批量不变推理技术解析:攻克大模型输出一致性的工程挑战

    在大型语言模型(LLM)的推理部署中,一个长期困扰开发者和研究者的难题是:相同的输入在不同批量大小(batch size)下会产生不一致的输出概率分布。这种看似微小的差异,在需要严格可重现性的生产环境中——如金融风险评估、医疗诊断辅助、法律文本生成或科学计算——可能引发严重后果。它不仅影响模型的调试和测试流程,更会削弱用户对AI系统可靠性的信任。近日,vLL…

    2025年10月23日
    200