多模态模型

  • 像素级视觉革命:FG-CLIP 2如何突破多模态模型的细粒度理解瓶颈

    在人工智能的视觉生成领域,我们常常惊叹于大模型创造的绚丽图像,但当涉及具体细节和精确空间关系时,传统模型的局限性便暴露无遗。例如,当要求生成“一只穿红外套的猫,站在一辆蓝色跑车左边,蓝色跑车后面是一辆白色SUV”时,模型往往难以准确理解“后面”这一空间关系,导致生成结果与预期不符。 同样,在搜索“一辆红色的特斯拉,引擎盖上很多鸟粪”这类高度具体的图像时,传统…

    2025年11月5日
    200
  • UniLIP:突破多模态模型语义理解与像素重建的权衡,实现统一表征新范式

    在人工智能多模态领域,一个长期存在的核心挑战是如何构建既能深度理解语义又能精确重建像素的统一表征模型。传统方法往往在这两个目标间面临艰难权衡:专注于语义理解的模型(如基于CLIP的编码器)在图像重建任务中表现欠佳,而专注于像素重建的模型(如VAE)则语义理解能力有限。本文深入分析北京大学与阿里通义万相实验室联合提出的UniLIP模型,探讨其如何通过创新的两阶…

    2025年11月2日
    300
  • Emu3.5:原生多模态世界模型的突破与全场景应用解析

    Emu3.5是由北京智源研究院最新发布的大规模多模态世界模型,其核心创新在于原生支持视觉与语言的联合状态预测。该模型采用统一的下一token预测目标进行端到端预训练,训练数据规模超过10万亿token,主要来源于互联网视频的连续帧及其转录文本,这为模型理解动态视觉序列与语言描述的关联性奠定了坚实基础。 模型架构设计上,Emu3.5天然接受交错的视觉-语言输入…

    2025年11月1日
    400