多模态融合

  • DualCamCtrl:几何感知扩散模型革新视频生成,相机运动误差降低40%

    本研究的共同第一作者是来自香港科技大学(广州)EnVision Research 的张鸿飞(研究助理)和陈康豪(博士研究生),两位研究者均师从陈颖聪教授。 你的生成模型真的「懂几何」吗?还是只是在假装对齐相机轨迹? 当前众多视频生成模型虽宣称具备「相机运动控制」能力,但其控制信号通常仅依赖于相机位姿。虽近期工作通过逐像素射线方向(Ray Condition)…

    2025年12月21日
    9600
  • DualCamCtrl:双分支扩散模型革新视频生成,几何感知让相机运动误差降低40%

    本研究的共同第一作者是来自香港科技大学(广州)EnVision Research 的张鸿飞(研究助理)和陈康豪(博士研究生),两位研究者均师从陈颖聪教授。 你的生成模型真的「懂几何」吗? 当前众多视频生成模型虽宣称具备「相机运动控制」能力,但其控制信号通常仅依赖于相机位姿。近期工作虽通过逐像素射线方向(Ray Condition)编码了运动信息,但由于模型仍…

    2025年12月21日
    7800
  • 跨越模态边界:构建真正理解图像、表格与文本的多模态RAG系统

    构建多模态 RAG 系统的终极指南 三个月前,我们新开发的 AI 应用在诸多看似简单的问题上频频“翻车”。问题根源并非 AI 不够智能或数据不足,而是因为答案蕴含在一张图片里,而当时的系统仅能处理文本。 这一时刻迫使我直面一个在构建 RAG 系统时长期回避的核心问题:我们花费数年时间教 AI “阅读”文字,却忽略了人类同样通过图像、表格、公式和流程图来“表达…

    2025年12月16日
    8100
  • 从特征拼接失败到策略共识突破:多模态机器人感知的范式转移

    在机器人技术快速发展的今天,多模态感知融合已成为提升机器人环境交互能力的关键路径。然而,传统方法在处理稀疏模态任务时暴露出的严重缺陷,正推动着研究范式的根本性转变。由伊利诺伊大学香槟分校、哈佛大学、哥伦比亚大学和麻省理工学院联合完成的这项研究,通过《Multi-Modal Manipulation via Policy Consensus》论文(链接:htt…

    2025年12月3日
    8300
  • WorldVLA:统一视觉语言动作与世界模型,开启具身智能新范式

    在人工智能迈向通用智能(AGI)的进程中,具身智能(Embodied AI)作为关键方向,要求智能体不仅能感知环境,更要能理解物理规律并执行精确动作。传统方法中,视觉语言动作模型(VLA)与世界模型(World Model)往往各自为战,前者擅长跨任务泛化但缺乏对动作的深度理解,后者能预测环境变化却无法直接生成动作。这种割裂严重制约了机器人在复杂场景中的自主…

    2025年10月29日
    7600