多模态融合
-
从特征拼接失败到策略共识突破:多模态机器人感知的范式转移
在机器人技术快速发展的今天,多模态感知融合已成为提升机器人环境交互能力的关键路径。然而,传统方法在处理稀疏模态任务时暴露出的严重缺陷,正推动着研究范式的根本性转变。由伊利诺伊大学香槟分校、哈佛大学、哥伦比亚大学和麻省理工学院联合完成的这项研究,通过《Multi-Modal Manipulation via Policy Consensus》论文(链接:htt…
-
WorldVLA:统一视觉语言动作与世界模型,开启具身智能新范式
在人工智能迈向通用智能(AGI)的进程中,具身智能(Embodied AI)作为关键方向,要求智能体不仅能感知环境,更要能理解物理规律并执行精确动作。传统方法中,视觉语言动作模型(VLA)与世界模型(World Model)往往各自为战,前者擅长跨任务泛化但缺乏对动作的深度理解,后者能预测环境变化却无法直接生成动作。这种割裂严重制约了机器人在复杂场景中的自主…