大模型优化

  • Gengram:16天实现基因组AI效率革命,外挂字典让模型推理速度飙升

    今年 1 月,DeepSeek 发布了一项名为 Engram(条件记忆)的技术,在大模型领域引起了广泛关注。 其核心思想非常直接:不让模型费力记忆所有常识,而是为其配备一个可随时查询的“外挂记忆库”。 具体实现上,它将常见的 N-gram(如“人工智能”、“光合作用”)预先存入一个哈希表。当模型需要时,直接查表即可获取相关信息,从而节省大量计算资源,使其能更…

    2天前
    1300
  • DeepSeek开源Engram模块:查算分离破解Transformer/MoE架构记忆推理冲突,开启大模型降本增效新范式

    本文将从技术原理、性能验证、算力变革、产业链影响、国际对比及挑战展望六大维度,深度解析这一技术突破的核心价值与行业影响。 2026年1月13日,AI领域迎来一项颠覆性技术突破——DeepSeek在其GitHub官方仓库正式开源了题为《Conditional Memory via Scalable Lookup: A New Axis of Sparsity …

    2026年1月24日
    3800
  • 强化学习重塑记忆系统:Mem-α如何让大模型学会“主动记忆”

    在人工智能领域,大语言模型的快速发展正将“记忆”问题推向技术前沿。当前,即使是最先进的GPT-4.1等模型,在处理持续增长的交互时,仍面临成本与延迟的指数级上升挑战。传统的外部记忆系统大多依赖人工规则与预设指令,导致模型缺乏对“何时记忆、记忆什么、如何更新”等核心问题的真正理解。Mem-α的出现,标志着记忆管理从规则驱动向学习驱动的范式转变——这项由加州大学…

    2025年11月7日
    8400
  • RAG系统评测全攻略:五大核心指标与三种方法深度解析

    在构建RAG系统时,如何科学地评测系统效果是每个开发者都会面临的挑战。一个优秀的RAG系统不仅要能检索到相关信息,还要能准确理解用户意图并生成可靠的答案。本文将带你深入了解RAG系统的评测体系,从核心指标到实战落地,帮助你建立起完整的评测方法论。 一、为什么需要科学的评测体系? RAG系统本质上包含三个核心环节:理解用户问题、检索相关文档、生成最终答案。每个…

    2025年10月28日
    7600