大语言模型
-
阿里千问突破大模型强化学习稳定性难题:从序列级奖励到token级优化的理论重构与实践验证
在人工智能领域,大语言模型(LLM)的强化学习(RL)训练已成为提升模型复杂推理与问题解决能力的关键技术路径。然而,当前主流RL方法普遍面临一个根本性矛盾:奖励信号通常基于完整生成序列(序列级)进行评估,而优化过程却在单个token级别进行。这种“奖励-优化”层级的不匹配不仅引发了理论上的健全性质疑,更在实际训练中导致稳定性问题,特别是在混合专家(MoE)等…