推理模型
-
OpenAI前架构师深度剖析:AGI的关键在于模型自主突破能力,泛化问题成最大挑战
编辑 | 听雨 OpenAI前研究员Jerry Tworek近日在《Unsupervised Learning》节目中分享了他对AI发展的深度见解。Jerry Tworek是OpenAI推理模型o1、o3及Codex的关键架构师,深度参与了近年AI领域的多项突破。他近期离开OpenAI,旨在探索在大型实验室框架下较难开展的研究方向。 在访谈中,Jerry探讨…
-
美团LongCat-Flash-Thinking-2601实测:5600亿参数MoE推理模型,免费但响应慢6倍?
美团近期发布了LongCat-Flash-Thinking-2601模型,作为一款基于MoE架构的5600亿参数大型推理模型,官方宣称其在智能体任务上有显著提升。我们对该模型进行了全面评测,测试其在准确率、响应时间、Token消耗等关键指标上的实际表现。 LongCat-Flash-Thinking-2601版本表现:* 测试题数: 约1.5万* 总分(准确…
-
强化学习云:大模型训练下半场的新引擎与基础设施革命
2024年底,硅谷和北京的业界人士都在讨论同一个令人不安的话题:Scaling Law似乎正在撞墙。 当时,尽管英伟达的股价仍在飙升,但多方信源显示,包括备受期待的Orion(原计划的GPT-5)在内,新一代旗舰模型在单纯增加参数规模和训练数据后,并未展现出预期的边际效益提升。同时,也有研究认为高质量预训练数据将很快耗尽,甚至预测了明确的时间节点:2028年…
-
Ling-1T技术解析:蚂蚁集团如何通过“Every Activation Boosted”哲学重塑万亿参数推理模型范式
近日,AI领域权威吴恩达在其《The Batch Newsletter》中重点分析了蚂蚁集团最新开源模型Ling-1T,指出这款非推理(non-reasoning)模型在性能上直逼业界顶尖闭源模型,这一现象背后隐藏着重要的技术转向。吴恩达特别强调,Ling-1T在预训练阶段就强化了思维链(CoT)能力,这种做法“正在模糊推理与非推理模型之间的界限”。这一观察…