推荐系统

  • MUSE框架:为推荐系统植入多模态海马体,唤醒十万级沉睡数据

    在当今数字时代,用户在网络平台留下的每一个足迹——每一次点击、收藏、购买——都构成了其数字身份的重要记忆片段。然而,当前主流推荐系统普遍面临着一个严峻挑战:它们患有严重的“短期健忘症”。受限于计算资源、存储成本和实时性要求,这些系统往往只能处理用户最近数千条行为数据,而将那些沉睡在数年前的历史记录粗暴截断或遗忘。即便部分系统尝试召回这些长期行为,传统基于ID…

    3天前
    600
  • 从“内容理解”到“用户角色认知”:快手TagCF框架如何重塑推荐系统的逻辑范式

    在当今数字时代,推荐系统已成为连接用户与内容的核心枢纽。传统推荐算法主要聚焦于“内容层”的理解——通过分析用户的点击、停留、互动等行为数据,推断其对特定视频、话题或商品的偏好。这种基于统计关联的方法虽然在一定程度上能够捕捉用户的兴趣点,但其本质仍停留在“知其然”的层面:系统知道用户喜欢什么内容,却难以理解“用户是谁”这一根本问题。快手消费策略算法团队敏锐地洞…

    2025年11月27日
    100
  • 从技术突破到生态重塑:快手AI战略的产业级价值兑现路径分析

    2025年被广泛视为AI技术从实验室走向产业应用的关键转折点。在这一历史性节点上,以多模态生成、智能体(Agent)为代表的AI技术正加速探索更高效、更贴合实际需求的应用形态。其中最具战略意义的趋势在于:AI技术正在从单点创新迈向系统性、产业级价值的全面兑现。对于所有致力于数字化转型的企业而言,这不仅是一个技术命题,更是一个关乎未来竞争力的核心战略课题。 在…

    2025年11月3日
    400