数学推理
-
ROVER:颠覆传统强化学习范式,随机策略价值评估开启LLM数学推理新纪元
在人工智能领域,大语言模型(LLM)的数学推理能力一直是衡量其智能水平的重要标尺。近年来,基于可验证奖励的强化学习(RLVR)方法,如PPO、GRPO等,已成为提升模型推理能力的主流技术路径。然而,这些方法本质上仍沿袭传统强化学习的策略迭代框架——通过策略评估与策略改进的循环过程优化模型性能。这种范式在LLM推理任务中暴露出三大核心缺陷:训练稳定性差、计算复…
在人工智能领域,大语言模型(LLM)的数学推理能力一直是衡量其智能水平的重要标尺。近年来,基于可验证奖励的强化学习(RLVR)方法,如PPO、GRPO等,已成为提升模型推理能力的主流技术路径。然而,这些方法本质上仍沿袭传统强化学习的策略迭代框架——通过策略评估与策略改进的循环过程优化模型性能。这种范式在LLM推理任务中暴露出三大核心缺陷:训练稳定性差、计算复…