文本到3D生成

  • 强化学习赋能3D生成:首个文本到3D的RL范式攻克几何与物理合理性难题

    强化学习赋能3D生成:首个文本到3D的RL范式攻克几何与物理合理性难题 在大语言模型和文生图领域,强化学习(RL)已成为提升模型思维链与生成质量的关键方法。但当我们将目光转向更为复杂的文本到3D生成时,这套方法还会管用吗? 近期,一项由西北工业大学、北京大学、香港中文大学、上海人工智能实验室、香港科技大学合作开展的研究系统性探索了这一重要问题。 论文链接: …

    2025年12月20日
    8100
  • 强化学习赋能文本到3D生成:从算法突破到能力边界探索

    在人工智能生成内容领域,文本到3D生成技术正成为继大语言模型和文生图之后的下一个前沿阵地。这一技术旨在将自然语言描述转化为具有复杂几何结构、纹理细节和物理合理性的三维模型,其应用潜力覆盖数字孪生、游戏开发、工业设计、虚拟现实等多个关键领域。然而,与相对成熟的文本到2D图像生成相比,文本到3D生成面临着更为严峻的技术挑战:三维数据本身具有更高的维度复杂性、更强…

    2025年12月19日
    10300