智能体协作
-
PixelCraft:以高保真视觉处理与讨论式推理重塑结构化图像理解新范式
多模态大模型(MLLM)在自然图像理解领域已取得令人瞩目的成就,然而当任务场景转向图表、几何草图、科研绘图等高度结构化的图像时,传统方法的局限性便暴露无遗。细微的感知误差会沿着推理链条迅速放大,导致最终结论出现系统性偏差。线性、刚性的“链式思考”流程难以支撑复杂任务中必要的回溯、分支探索与假设修正,这已成为制约结构化图像理解迈向实用化的关键瓶颈。 针对这一挑…
多模态大模型(MLLM)在自然图像理解领域已取得令人瞩目的成就,然而当任务场景转向图表、几何草图、科研绘图等高度结构化的图像时,传统方法的局限性便暴露无遗。细微的感知误差会沿着推理链条迅速放大,导致最终结论出现系统性偏差。线性、刚性的“链式思考”流程难以支撑复杂任务中必要的回溯、分支探索与假设修正,这已成为制约结构化图像理解迈向实用化的关键瓶颈。 针对这一挑…