联邦学习
-
联邦学习新突破:FedVLR框架如何破解多模态推荐中的隐私与个性化悖论
在人工智能与推荐系统深度融合的今天,多模态信息处理已成为提升用户体验的核心技术路径。然而,当这一技术趋势与日益严格的数据隐私保护要求相遇时,一个根本性矛盾便浮出水面:如何在确保用户数据“不出本地”的前提下,实现精准的图文内容理解与个性化推荐?悉尼科技大学龙国栋教授团队联合香港理工大学杨强教授、张成奇教授团队提出的FedVLR框架,正是针对这一行业痛点的一次系…
在人工智能与推荐系统深度融合的今天,多模态信息处理已成为提升用户体验的核心技术路径。然而,当这一技术趋势与日益严格的数据隐私保护要求相遇时,一个根本性矛盾便浮出水面:如何在确保用户数据“不出本地”的前提下,实现精准的图文内容理解与个性化推荐?悉尼科技大学龙国栋教授团队联合香港理工大学杨强教授、张成奇教授团队提出的FedVLR框架,正是针对这一行业痛点的一次系…