长文本处理
-
MIT革命性突破:RLM技术让大模型零改动解锁千万级上下文,推理性能飙升580倍
MIT革命性突破:RLM技术让大模型零改动解锁千万级上下文,推理性能飙升580倍 让大模型轻松处理比自身上下文窗口长两个数量级的超长文本! MIT CSAIL研究团队提出了一种名为递归语言模型(RLM) 的长文本处理新方法,旨在解决“上下文腐烂”问题。该方法无需修改模型架构或升级模块设计,即可让GPT-5、Qwen-3等顶尖模型具备处理千万级Token超长文…
-
美团LongCat技术突破:LoZA稀疏注意力机制实现10倍解码加速,轻松驾驭百万级长文本
闻乐 发自 凹非寺 量子位 | 公众号 QbitAI 256K文本预加载提速超50%,并解锁了1M上下文窗口。 美团LongCat系列发布全新稀疏注意力机制LoZA。 该技术旨在集中解决长文本任务中的理解与算力难题。 相比LongCat系列之前的全注意力MLA机制,LoZA仅改造了一半的核心模块,却将模型的长文本处理能力从256K扩展到1M,同时显著提升了解…
-
华为openPangu-R-7B-Diffusion:扩散语言模型突破32K长文本瓶颈,开启“慢思考”推理新范式
在人工智能技术快速演进的浪潮中,文本生成领域正经历着从自回归模型到扩散语言模型(Diffusion Language Models)的深刻范式转变。这一转变不仅代表着技术路径的革新,更预示着语言模型在处理复杂认知任务时的能力边界将被重新定义。然而,扩散模型在长序列训练中的不稳定性问题,尤其是上下文窗口的限制,一直是制约其在数学推理、编程任务等需要深度“慢思考…
-
视觉压缩革命:VIST框架如何让大语言模型像人类一样高效阅读长文本
在人工智能领域,大语言模型(LLM)的上下文长度扩展与计算效率之间的矛盾日益凸显。NeurIPS 2025会议上,南京理工大学、中南大学、南京林业大学联合研究团队提出的VIST(Vision-centric Token Compression in LLM)框架,通过创新的视觉压缩机制,为大语言模型的长文本处理提供了突破性解决方案。这一技术路径与近期备受关注…