Max-Former
-
突破SNN性能瓶颈:Max-Former揭示频率偏置是核心问题,以高频增强实现精度与能效双提升
脉冲神经网络(SNN)长期以来被视为实现超低功耗智能计算的希望,但其性能往往落后于传统人工神经网络(ANN)。传统观点认为,SNN中二进制脉冲激活导致的信息损失是性能差距的主要原因。然而,香港科技大学(广州)等单位在NeurIPS 2025发表的研究提出了颠覆性见解:SNN性能不佳的根源并非二进制激活本身,而在于脉冲神经元固有的频率偏置问题。 研究团队通过深…