RAG优化
-
RAG延迟削减97%!REFRAG技术揭秘:压缩、感知、扩展三阶段实现效率飞跃
传统RAG为何低效:冗余与延迟的根源 传统检索增强生成(RAG)流水线通常将检索到的多个文本片段直接拼接,作为上下文输入给大语言模型。然而,这些片段之间往往缺乏紧密的语义关联,导致模型在处理时需要为大量无关内容计算注意力权重。这不仅浪费了宝贵的计算资源,更关键的是,模型将大量时间耗费在了跨片段(cross-chunk)的、近乎无效的注意力计算上,效率低下。 …
-
REFRAG:突破RAG性能瓶颈,利用注意力稀疏性实现30倍加速
随着大语言模型在检索增强生成(RAG)系统中的广泛应用,一个日益突出的性能问题浮出水面:上下文窗口的持续扩展导致首个token生成延迟呈二次方增长,严重制约了系统的实时响应能力。传统RAG流程虽然简单直接——将查询编码为向量,从向量数据库中检索相似文本块,然后完整输入给LLM处理——但这种方法存在显著效率缺陷。大多数检索到的文本块包含大量无关内容,迫使LLM…