token效率
-
TOON vs JSON:为LLM优化的结构化数据格式革命
在提示词日益冗长、AI模型愈发强大的当下,一个核心问题反复浮现:如何同时降低使用成本和处理时间? 在以编程方式使用大语言模型时,结构化输出已成为标准实践。开发者可以要求模型按特定格式输出,例如JSON。通过定义一个模型架构并阐明各字段含义,AI会尽力理解上下文,并在其能力范围内填充输出。 这使得处理AI的响应变得前所未有的便捷。然而,输入环节呢? 即便我们能…
-
开源压缩工具caveman-compression:如何通过语言优化将大模型API成本降低40%以上
随着大模型API的广泛应用,开发者面临日益增长的token成本压力。每月数千甚至上万元的API账单已成为许多AI项目的沉重负担。在这种背景下,开源项目caveman-compression提供了一种创新的解决方案:通过语言压缩技术,在保持语义完整性的前提下,显著减少token消耗,从而实现成本的大幅降低。 ### 语言压缩的核心原理:利用大模型的补全能力 c…