科研自动化
-
PaperBanana:北大与谷歌联手推出AI论文插图生成器,顶会级图表一键生成
你负责写方法,AI负责画 Figure。科研打工人,终于等来「画图解放日」。 还在为论文里的方法框图熬夜画 PPT、拉箭头、对齐字体吗? 一张 Figure 2,动辄几个小时,严重的甚至能耗上几天,科研人的「隐藏副本」不是实验,而是画图。 既要忠于论文原意,又得暗暗符合顶会那套心照不宣的「学术审美」:颜色不能土,布局不能乱,箭头更不能连错。 看起来只是一张图…
-
深度研究智能体:从信息搜索到自主科研的演进之路
近年来,大模型的应用正从对话与创意写作,走向更加开放、复杂的研究型问题。尽管以检索增强生成(RAG)为代表的方法缓解了知识获取瓶颈,但其静态的“一次检索 + 一次生成”范式,难以支撑多步推理与长期研究流程,由此催生了深度研究(Deep Research, DR)这一新方向。 然而,随着相关工作的快速涌现,DR的概念也在迅速膨胀并趋于碎片化:不同工作在系统实现…
-
Kosmos:结构化世界模型驱动的全自动AI科学家,跨学科科研生产力革命
在人工智能技术不断渗透科研领域的背景下,一款名为Kosmos的AI科学家系统引发了广泛关注。该系统通过结构化世界模型实现了从文献检索、数据分析到论文撰写的全自动化流程,无需人类干预即可完成复杂科研任务。本文将从技术架构、跨学科应用、性能对比及局限性等方面进行深入分析,探讨其对科研范式的潜在影响。 Kosmos的核心创新在于其结构化世界模型,该模型为数据分析与…
-
AI Agent独立复现顶会论文能力大揭秘:OpenAI PaperBench基准测试深度解析
当我们探讨AI的边界时,一个颇具挑战性的问题浮现出来:AI能否像人类研究者一样,独立阅读一篇前沿论文,理解其核心思想,从零编写代码,并成功复现实验结果? OpenAI最新发布的PaperBench基准测试,正是为回答这个问题而设计的。这项研究不仅展现了当前AI Agent的真实能力边界,更为我们理解“AI辅助科研”这一命题提供了量化的参照系。 为什么需要Pa…