快手CroPS:跨视角正样本引擎打破搜索信息茧房,AAAI 2026 Oral成果引领向量检索新范式

短视频搜索是向量检索在工业界最核心的应用场景之一。然而,当前业界普遍采用的「自强化」训练范式过度依赖历史点击数据,导致系统陷入信息茧房,难以召回潜在相关的新鲜内容。

针对这一问题,快手搜索团队提出了一套全新的检索数据引擎 CroPS(Cross-Perspective Positive Samples)。该方法通过引入用户换 Query 数据、推荐流数据以及大模型生成的世界知识,多视角丰富了正样本信号,并结合层次化标签分配(HLA)策略和 H-InfoNCE 损失函数,实现了对相关性的精细化建模。

目前,CroPS 已在快手搜索业务中实现全量部署,服务亿级用户。实测表明,该方案在具备极强的架构普适性的同时,显著提升了 CTR 与长播率,并有效降低用户换 Query 率,优化了搜索体验。

本工作相关成果《CroPS: Improving Dense Retrieval with Cross-Perspective Positive Samples in Short-Video Search》已被人工智能顶级会议 AAAI 2026 Oral 接收。

快手CroPS:跨视角正样本引擎打破搜索信息茧房,AAAI 2026 Oral成果引领向量检索新范式

  • 论文链接:https://arxiv.org/pdf/2511.15443v1

背景

当前工业界主流的向量检索模型通常采用对比学习范式进行训练,其核心是拉近 Query 与正样本在向量空间中的距离,同时推远与负样本的距离,从而学习内容相关性。

然而,在绝大多数工业系统中,训练数据的正样本高度依赖历史曝光日志中的用户交互行为(如点击),这导致了「自强化」循环:模型倾向于检索与历史高频点击内容相似的视频,用户受限于展示结果,只能在有限内容中选择和反馈,而这些反馈又再次作为正样本进入下一轮训练,进一步强化了模型原有的偏好。

这种机制不可避免地引发了严重的样本偏差。一方面,大量潜在相关但从未获得曝光机会的优质长尾内容,被系统性地排除在正样本之外,甚至在随机负采样过程中被错误标记为负样本。这种偏差使模型的检索视野逐渐狭窄,搜索结果变得保守且单一。另一方面,由于缺乏对新颖内容的探索能力,用户的搜索体验逐渐固化,难以在结果中获得惊喜或满足探索性需求。

快手CroPS:跨视角正样本引擎打破搜索信息茧房,AAAI 2026 Oral成果引领向量检索新范式

以往的学术研究多致力于改进模型结构(如引入交互更复杂的 Poly-Encoder)或优化负采样策略(如挖掘困难负样本),从而提升检索性能。虽然这些方法在一定程度上增强了对已知内容的判别能力,但始终在历史曝光数据的界限内打转,无法从根本上缓解正样本来源单一所带来的“信息茧房”效应。

针对这一挑战,快手搜索团队提出了 CroPS 框架,从根源上打破数据闭环。CroPS 首次在业界引入「跨视角」的正样本信号,重塑了检索模型的训练图景。

方法

快手CroPS:跨视角正样本引擎打破搜索信息茧房,AAAI 2026 Oral成果引领向量检索新范式

多视角正样本增强引擎 CroPS

为了打破数据边界,CroPS 框架构建了一个包含三个维度的正样本增强引擎,分别利用用户换 Query 行为、推荐系统反馈以及大语言模型(LLM)的世界知识,来全方位地丰富语义空间。

1. 基于用户换 Query 行为的查询级增强

在真实的搜索场景中,用户往往难以一次性精准表达意图。当用户输入查询词 A 却未能找到满意结果时,通常会进行查询重构,输入语义相关但表述不同的查询词 B。如果用户在查询词 B 的结果下产生了深度交互,那么该交互视频在语义上极有可能是查询词 A 的理想正样本,尽管它从未在 A 的结果中获得足够的曝光。

CroPS 敏锐地捕捉到了这种「意图连续性」。通过分析用户在短时间窗口内的改写序列,并利用轻量级语义判别器进行过滤,系统能够将改写后获得的成功点击“回流”给原始查询,利用用户的修正行为来纠正模型的语义偏差。

2. 打破搜推壁垒的系统级增强

推荐系统拥有海量用户消费数据,并且其算法机制天然倾向于发散和探索,因此推荐流中的视频往往具有更丰富的多样性。

CroPS 建立了一套跨系统的信号桥接机制:对于同一个用户,如果他在推荐信息流中深度消费了某个视频,且该视频在语义上与用户近期的搜索词高度相关,该视频就会被引入作为搜索模型的正样本。

通过这种跨系统的信号融合,搜索模型能够利用推荐系统的探索能力,将用户感兴趣但未主动搜索到的内容纳入召回视野,从而有效缓解单一系统带来的位置偏差和曝光偏差。

3. 引入大模型的知识级增强

当平台现有的内容库或日志无法覆盖某些长尾、复杂查询时,单纯依赖内部数据是无解的。为此,CroPS 引入了大语言模型(LLM)作为「虚拟检索器」和「内容生成器」,利用 LLM 蕴含的丰富世界知识生成高质量合成样本。

具体而言,系统采用单样本提示(One-shot Prompting)策略,让 LLM 扮演视频内容专家,针对特定查询生成包含标题、描述和标签的虚拟视频元数据。将这些合成数据作为正样本,训练双塔模型,相当于将外部世界的常识与逻辑“蒸馏”进检索模型中。

这一方法使得模型在面对「冷门」或「从未见过」的搜索 query 时,仍能够凭借语义理解能力找到相关内容,从而彻底突破平台存量数据的限制。

快手CroPS:跨视角正样本引擎打破搜索信息茧房,AAAI 2026 Oral成果引领向量检索新范式

层次化标签分配 (HLA)

HLA 的核心是解决 CroPS 多源正样本的「可靠性差异」问题。不同来源的正样本(比如:用户换 Query 后产生互动的视频、推荐流中的视频)与用户真实需求的契合度各不相同。如果一视同仁进行训练,模型可能难以抓住重点。

因此,HLA 为样本分配「分层标签」,让模型能够识别样本的重要程度,从而学习更细粒度的相关性,更好地契合系统优化目标。

具体来说,HLA 将样本划分为「正样本相关层级」和「负样本层级」,为后续训练提供「细粒度监督信号」,不同类型样本对应固定标签,具体如下:

快手CroPS:跨视角正样本引擎打破搜索信息茧房,AAAI 2026 Oral成果引领向量检索新范式

H-InfoNCE 损失函数

传统的语义召回采用的是 InfoNCE 进行优化,默认「样本只有正 / 负两种标签」,会逐个对比「单个正样本」和「对应的负样本」,无法区分 HLA 里「高标签正样本(如上图 Table 1 的标签 5)」和「低标签正样本(如上图 Table 1 的标签 3)」的层次化差异。

而 H-InfoNCE 在训练时,将「当前样本」与「标签严格低于它的所有样本」进行对比。这不仅突显了高优先级样本的重要性,也使学习目标与 HLA 的层级逻辑完全对齐,实现细粒度的语义区分。例如:

  • 若当前样本是「用户换 Query(标签 5)」,H-InfoNCE 会将其与「标签 ≤4 的所有样本(包括推荐正例、曝光未点击样本、负样本等)」 一起对比,强制模型学习「标签 5 样本与查询的相似度,必须高于所有低标签样本」。
  • 若当前样本是「曝光未点击样本(标签 3)」,则只需对比「标签 ≤2 的样本」。

通过这种方式,模型能够逐步掌握「高标签样本更重要」的排序逻辑。

快手CroPS:跨视角正样本引擎打破搜索信息茧房,AAAI 2026 Oral成果引领向量检索新范式

H-InfoNCE 在这里通过样例标签矩阵、样本 mask 矩阵等得到了高效实现。

快手CroPS:跨视角正样本引擎打破搜索信息茧房,AAAI 2026 Oral成果引领向量检索新范式

快手CroPS:跨视角正样本引擎打破搜索信息茧房,AAAI 2026 Oral成果引领向量检索新范式

实验结果

为了验证这一框架的有效性,团队构建了两类测试集,来衡量模型的召回率 Recall@100:

  1. CT:用户点击测试数据集,即用户点击的视频作为正例;
  2. QR:用户换 Query 测试数据集,即用户换 Query 后消费的视频作为正例。

同时也引入了相关性标注测试数据集,以 NDCG@4 为监测指标,作为模型的相关性表征能力度量。

离线实验

论文中主要比较了三类主流方法:

  1. 经典方法:BM25(概率排序基线)、NCE(传统对比学习);
  2. 神经网络方法:DPR(双编码器稠密检索)、ANCE(动态难负样本采样)、ADORE+STAR(NN 模型引入筛选负例);
  3. 负采样策略:TriSampler(基于样本的空间位置进行的负例采样)、FS-LR(多级别负标签策略)。

在离线实验测试中,CroPS 相较于最强基线 FS-LR 在 CT 数据集上提升 9.5%,在换 Query 测试集 QR 上提升 7.1%。同时 NDCG@4 和最强基线相当(67.4%->67.0%)。

快手CroPS:跨视角正样本引擎打破搜索信息茧房,AAAI 2026 Oral成果引领向量检索新范式

在线实验

在快手搜索的大规模 A/B 测试中,CroPS 带来了全方位的业务增长:

  • 点击率(CTR) 显著提升了 0.869%,长播放率(LPR) 提升了 0.483%,表明召回的内容不仅相关度高,而且内容质量足以吸引用户长时间驻留。
  • 用户换 Query 率(RQR) 下降了 0.646%,意味着用户「一次搜对」的概率大幅增加,不再需要频繁更换搜索词来找到想要的内容,直接反映了用户搜索体验的质变。

快手CroPS:跨视角正样本引擎打破搜索信息茧房,AAAI 2026 Oral成果引领向量检索新范式
快手CroPS:跨视角正样本引擎打破搜索信息茧房,AAAI 2026 Oral成果引领向量检索新范式

总结与展望

CroPS 证明了在工业检索系统中,正样本增强是缓解「信息茧房」问题的有效钥匙,能够提升系统上限。通过跨视角引入多样化信号,并结合精细化优化策略,CroPS 成功打破了自强化训练的边界。

未来,快手搜索团队将进一步探索 CroPS 与生成式检索(Generative Retrieval)方法的融合,持续挖掘大规模语言模型在搜索全链路中的潜力。


关注“鲸栖”小程序,掌握最新AI资讯

本文来自网络搜集,不代表鲸林向海立场,如有侵权,联系删除。转载请注明出处:http://www.itsolotime.com/archives/17690

(0)
上一篇 2026年1月12日 下午12:00
下一篇 2026年1月12日 下午12:40

相关推荐

  • Dual-Flow:颠覆传统对抗攻击范式,实现多目标多模型黑盒攻击新突破

    在人工智能安全领域,对抗攻击一直是研究的热点与难点。近日,清华大学与蚂蚁数科联合在NeurIPS 2024会议上提出的Dual-Flow框架,为这一领域带来了革命性的突破。该框架通过创新的双流结构和训练机制,实现了对多种模型、多种类别的黑盒攻击,且无需依赖目标模型结构或梯度信息,为AI模型的安全性评估与防御体系构建提供了全新的视角与工具。 Dual-Flow…

    2025年12月15日
    9100
  • 影目INMO:一年三轮融资近5亿,中国AI+AR眼镜如何以技术领跑全球赛道

    CES大奖拿到手软,中国创企正把AI+AR眼镜爆款做向全球。 在刚刚过去的CES 2026上,给人留下印象最为深刻的要数中国的AI眼镜军团和中国机器人军团。如果说人形机器人领域尚有波士顿动力这样的巨头能与中国大厂抗衡,那么AI眼镜赛道几乎完全成为中国公司主场。 据不完全统计,CES上展出各类AI眼镜的中国企业超过了27家,展区人头攒动十分火爆,产品体验热情颇…

    2026年1月15日
    9000
  • 从特征拼接失败到策略共识突破:多模态机器人感知的范式转移

    在机器人技术快速发展的今天,多模态感知融合已成为提升机器人环境交互能力的关键路径。然而,传统方法在处理稀疏模态任务时暴露出的严重缺陷,正推动着研究范式的根本性转变。由伊利诺伊大学香槟分校、哈佛大学、哥伦比亚大学和麻省理工学院联合完成的这项研究,通过《Multi-Modal Manipulation via Policy Consensus》论文(链接:htt…

    2025年12月3日
    7900
  • 无需训练即可解锁4D感知:VGGT4D如何从静态3D模型中挖掘动态线索

    从静态3D到动态4D的演进挑战 以Visual Geometry Transformer(VGGT)和DUSt3R为代表的3D基础模型在静态场景重建领域已展现出卓越性能。然而,当面对包含移动物体(如行人、车辆)的动态4D场景时,这些模型的性能往往显著下降。动态物体的运动不仅会干扰背景几何建模,还会导致严重的相机位姿漂移问题。 当前解决方案主要面临两大挑战:一…

    2025年12月19日
    9600
  • 红杉资本权力更迭深度解析:AI投资错失、治理风波与战略转型

    红杉资本(Sequoia Capital)近期的高层变动,表面上是CEO罗洛夫·博塔(Roelof Botha)的“主动让贤”,实则是一场由内部合伙人发起的权力重构。这一事件不仅反映了硅谷顶级风投机构在AI浪潮中的战略焦虑,更揭示了其治理机制、投资决策与领导风格之间的深层矛盾。本文将深入分析博塔下台的导火索、红杉在AI领域的布局失误,以及新任领导层面临的挑战…

    2025年12月11日
    8100