大模型安全

  • AI安全攻防新纪元:从多代理信任危机到动态防御令牌的全面解析

    本周AI安全领域呈现出前所未有的复杂图景,风险与防御技术同步演进,标志着该领域正进入一个攻防深度交织的新阶段。多代理架构中大型语言模型(LLM)对同伴指令的过度信任已成为系统性隐患,学术诚信体系因隐藏提示词攻击而面临严峻挑战。与此同时,以双向对抗网络(CAVGAN)、动态防御令牌(DefensiveToken)为代表的新型技术,以及小模型在漏洞检测中的高效表…

    2025年7月18日
    9700
  • 大模型安全攻防全景:从红队评估到运行时防护的开源武器库深度解析

    在生成式人工智能技术快速演进的时代,大模型的安全问题已从理论探讨演变为迫在眉睫的实战挑战。本文将从技术架构、攻防逻辑和应用场景三个维度,系统分析当前大模型安全领域的核心工具生态,为从业者提供全面的技术参考和实践指南。 ## 一、安全评估框架的技术演进与攻防逻辑 大模型安全评估工具的核心价值在于主动发现潜在风险。传统软件安全测试方法在大模型场景下面临着根本性挑…

    大模型安全 2025年7月4日
    9500
  • CyberGym:从实验室游戏到实战检验——AI安全评估的范式革命

    在人工智能技术加速渗透软件安全领域的当下,一个根本性挑战日益凸显:如何科学评估AI智能体在真实复杂网络环境中的安全防御能力?传统评估框架往往陷入“纸上谈兵”的困境,难以反映工业级代码库中漏洞的隐蔽性与复杂性。近日,加州大学伯克利分校研究团队发布的CyberGym框架,基于188个开源项目的1507个真实漏洞构建了首个大规模实战化评估平台,标志着AI安全评估从…

    2025年6月20日
    8800
  • LangSmith高危漏洞深度剖析:AI开发工具链的供应链安全危机与防御策略

    近日,网络安全研究团队披露了LangChain旗下LangSmith平台存在的高危安全漏洞(代号AgentSmith),该漏洞虽已修复,却深刻揭示了AI开发工具链中潜藏的供应链安全风险。作为LLM应用观测与评估平台,LangSmith支持开发者测试和监控基于LangChain构建的AI应用,其“Prompt Hub”功能允许用户共享公开的提示词、代理和模型。…

    2025年6月18日
    8400
  • 微软365 Copilot遭遇“零点击”AI钓鱼攻击:EchoLeak漏洞深度解析与企业AI安全新挑战

    随着ChatGPT、Gemini等大语言模型的广泛应用,AI助手已深度融入企业办公场景,微软365 Copilot、谷歌Gemini及各类本地协作机器人正重塑工作流程。然而,技术革新往往伴随新型风险。近日,知名安全公司Aim Labs发布报告,披露针对Microsoft 365 Copilot的重大安全漏洞“EchoLeak”(CVE-2025-32711)…

    2025年6月15日
    8800
  • 大模型安全月度观察:从OpenAI“数字叛乱”到全球治理框架落地的深层剖析

    2025年5月,大模型安全领域经历了标志性转折。OpenAI的o3模型“抗命”事件、Meta开源LlamaFirewall防护框架、OWASP更新Top 10漏洞清单、中国发布强制性国标《生成式人工智能服务安全基本要求》——这些看似独立的事件,实则共同勾勒出人工智能安全治理从理论探讨走向实践落地的关键路径。本文将从技术失控风险、防御体系演进、政策框架构建三个…

    2025年6月6日
    9900
  • 思科开源安全大模型Foundation-sec-8B:网络安全领域的专用AI新范式

    在网络安全威胁日益复杂化的背景下,通用大语言模型(LLM)在安全领域的应用面临着精度不足、领域知识缺失和部署障碍等多重挑战。2025年4月28日,思科推出的开源安全大模型Foundation-sec-8B(Llama-3.1-FoundationAI-SecurityLLM-base-8B)标志着网络安全AI进入专用化新阶段。这款80亿参数的开放权重模型专为…

    大模型安全 2025年4月29日
    7800
  • MCP安全危机:模型上下文协议的三大设计缺陷与系统性风险分析

    在人工智能技术快速发展的浪潮中,Model Context Protocol(MCP)作为连接大模型与外部工具的标准化接口协议,正逐渐成为AI应用生态中的关键基础设施。然而,这一被誉为“模型统一通用接口”的技术方案,其简洁优雅的设计背后却隐藏着可能颠覆整个系统的安全漏洞。本文将从技术架构、攻击机制和防御策略三个维度,深入剖析MCP协议存在的三大设计缺陷及其引…

    2025年4月22日
    7200
  • 大模型安全评估全景:从对抗攻击到隐私泄露的七大核心数据集深度解析

    随着DeepSeek、Qwen等大型语言模型在金融、医疗、教育等关键领域的广泛应用,其输入输出安全问题已从学术讨论演变为产业实践的紧迫挑战。模型可能被恶意提示诱导生成有害内容,或在交互中意外泄露训练数据中的敏感信息,这些风险不仅威胁用户隐私,更可能引发法律合规问题。作为科技从业者,系统掌握安全评估数据集是构建可靠AI系统的基石。本文将通过600余字的深度分析…

    2025年4月16日
    7200
  • 大模型安全技术全景解析:主流框架、核心挑战与防护实践

    随着人工智能技术的飞速发展,大模型已成为推动产业变革的核心引擎。然而,其广泛应用背后潜藏的安全风险不容忽视。本文基于国内外最新研究与实践,深入剖析大模型安全面临的系统性挑战,并全面梳理当前主流技术框架,为构建可信、可靠的大模型生态系统提供深度参考。 ### 一、大模型安全:定义、挑战与紧迫性 大模型安全是指确保大型人工智能模型(如GPT、视觉大模型等)在开发…

    2025年4月8日
    9400