医疗大模型
-
百川M3 Plus以2.6%幻觉率与证据锚定技术,重塑医疗AI可信边界
百川M3 Plus以2.6%幻觉率与证据锚定技术,重塑医疗AI可信边界 AI正悄然成为许多人寻医问诊流程中的前置入口。然而,在严肃的医疗领域,不准确的建议甚至比没有建议更危险。因此,AI想要真正进入临床,必须翻越“信任”与“成本”两座大山。 百川智能最新发布的循证增强医疗大模型Baichuan-M3 Plus(以下简称M3 Plus)给出了极具诚意的答案。凭…
-
中国团队首创医疗AI临床安全-有效性双轨评估标准CSEDB,MedGPT全球评测夺冠
中国团队首创医疗AI临床安全-有效性双轨评估标准CSEDB,获《npj Digital Medicine》收录 中国团队首次在全球顶尖期刊发表“大模型+医疗”领域的相关标准研究。 作为Nature体系中专注于数字医疗的旗舰期刊,《npj Digital Medicine》(JCR影响因子15.1,中科院医学大类1区Top期刊)此次收录的CSEDB研究,首次提…
-
商汤医疗:以“医疗世界模型”重构智慧医院,半年融资10亿的AI医疗新范式
在AI技术加速渗透医疗领域的当下,商汤医疗作为商汤集团“1+X”战略生态的核心延伸,在短短半年内累计融资规模已达10亿元,迅速跻身准独角兽行列。这一成绩不仅彰显了资本市场对AI医疗赛道的信心,更揭示了以“医疗世界模型”为核心的技术架构正在重塑智慧医院的未来图景。 商汤医疗的AI体系采用“通专融合”的技术路线,其核心是自研的医疗大语言模型“大医®”。这一模型在…
-
破解医疗大模型落地难题:构建科学评测体系的三大关键维度
近年来,大型语言模型正在重塑医疗领域的技术版图。从辅助临床决策到患者健康教育,从医学影像分析到复杂病例推理,这些技术展现出令人瞩目的应用前景。然而,我们也注意到一个关键问题:如何科学、全面地评测这些模型在医疗场景中的真实表现? 这个问题远比表面看起来复杂。医疗领域的特殊性——高风险、强专业性、数据敏感性——使得传统的模型评测方法面临前所未有的挑战。我们需要更…