大模型防御
-
AI安全前沿深度剖析:从越狱攻击到多模态防御,构建鲁棒大模型的新范式
近期,人工智能安全领域的研究焦点正从传统的漏洞修补转向对大型语言模型(LLM)系统性脆弱性的深度解构与主动防御机制的创新构建。一系列前沿论文不仅揭示了当前技术在对抗性攻击面前的显著局限,更为构建下一代鲁棒、可信的AI系统提供了多维度的解决方案。这些进展对于应对日益复杂的安全挑战、推动AI技术的负责任部署具有至关重要的指导意义。 在模型攻击层面,研究揭示了LL…
-
PromptLocate:大模型安全防御的精准手术刀——首个能定位并清除提示注入攻击的工具深度解析
在人工智能技术迅猛发展的今天,大模型的安全性问题日益凸显,其中提示注入攻击已成为威胁模型可靠性的核心挑战之一。近日,杜克大学与宾州州立大学联合研究团队推出的PromptLocate工具,标志着大模型安全防御迈入了精准定位与主动修复的新阶段。该工具不仅能检测数据污染,更能精准定位恶意内容的具体位置,实现数据净化和攻击溯源,为大模型的安全部署与应用提供了关键技术…