安全对齐

  • DAVSP:清华大学提出深度对齐视觉安全提示,重塑多模态大模型安全防线

    随着多模态人工智能技术的快速发展,大型视觉语言模型(LVLMs)已在图像描述、视觉问答、跨模态检索等多个下游任务中展现出卓越性能。然而,这种强大的多模态理解能力背后,却潜藏着日益严峻的安全风险。最新研究表明,即便是当前最先进的LVLMs,在面对经过精心设计的恶意图像-文本组合输入时,仍可能产生违规甚至有害的响应。这一安全漏洞的暴露,不仅对模型的实际部署构成了…

    2025年11月24日
    200
  • EnchTable:无需重训练的模型安全对齐框架,破解微调后安全能力退化难题

    在人工智能模型快速发展的当下,微调(Fine-tuning)已成为提升模型在特定任务上性能的关键技术。然而,最近的研究揭示了一个严峻问题:模型的微调过程会严重削弱其安全对齐(Safety Alignment)能力。这意味着,随着模型在特定领域能力的增强,其安全防护机制反而可能被削弱,导致模型在应对恶意查询、越狱攻击时表现脆弱。这种“能力越强越危险”的现象,已…

    2025年11月19日
    300