模型适配
-
从参数微调到任务重编程:揭秘神经网络可重编程性如何重塑大模型适配范式
从模型重编程、参数高效微调,到大模型时代的提示调优、指令提示与上下文学习,研究者和从业者始终在探索一个核心问题:如何在尽量不修改模型参数的前提下,最大限度地复用预训练模型的能力? 过去几年,这类方法在不同研究社区中以相对独立的形式快速发展——有的源于对抗鲁棒性与迁移学习领域,有的专注于下游任务适配,有的则成为大模型对齐与应用的基础工具。然而,这些看似分散的技…
从模型重编程、参数高效微调,到大模型时代的提示调优、指令提示与上下文学习,研究者和从业者始终在探索一个核心问题:如何在尽量不修改模型参数的前提下,最大限度地复用预训练模型的能力? 过去几年,这类方法在不同研究社区中以相对独立的形式快速发展——有的源于对抗鲁棒性与迁移学习领域,有的专注于下游任务适配,有的则成为大模型对齐与应用的基础工具。然而,这些看似分散的技…