评测基准

  • 超越结果正确:Coding Agent过程合规评测新范式揭秘

    在 AI 辅助编程工具的实际应用中,一个值得深思的现象正在浮现:用户对 Agent 的不满,往往不是因为它“做不到”,而是因为它“做得不对”。通过观察用户反馈,最高频的抱怨指向同一个问题:Agent 不遵循明确给出的指令。这些场景或许并不陌生——用户在系统提示中明确要求“不要使用 emoji”,Agent 却在代码注释里加上表情符号;用户要求“先备份再修改”…

    2026年1月15日
    8000
  • VitaBench评测揭示AI智能体真实应用瓶颈:跨场景成功率仅30%,三大维度量化任务复杂性

    点外卖时想让 AI 帮你筛选出符合口味、价格合适、配送及时的餐厅;规划旅行时希望它能一站式搞定机票、酒店、餐厅预订——这些看似简单的需求,对当前的大模型智能体而言,却是一道难以逾越的门槛。 美团 LongCat 团队近日发布的 VitaBench(Versatile Interactive Tasks Benchmark)评测基准,给出了一组值得深思的数据:…

    2025年12月11日
    9100
  • 揭秘多模态大模型评测中的“隐形浪费”:半数资源竟在重复劳动?

    当我们投入大量资源对多模态AI模型进行复杂评测时,是否想过其中有多少环节其实是在“原地打转”? 最近,上海人工智能实验室联合上海交通大学、浙江大学的一项研究揭示了一个值得警惕的现象:当前主流的多模态大模型基准评测中,普遍存在着大量冗余。研究团队对超过20个主流多模态基准和100多个模型进行了系统性扫描,发现了一些颇具启发性的规律。 这意味着什么?简单来说,我…

    2025年11月12日
    9200
  • 大模型评测的演进之路:从静态指标到动态验证(2025)【Benchmarks解读】

    在人工智能快速迭代的今天,大型语言模型(LLM)的能力边界不断拓展。从最初的文本生成,到如今的复杂推理、多模态理解、智能体协作,模型能力的跃升令人瞩目。然而,一个更为关键的问题浮出水面:我们真的知道如何准确衡量这些模型的能力吗? 评测基准的发展轨迹,恰恰映射着整个行业对“智能”理解的演进。本文将系统梳理当前大模型评测的全景图谱,分享在实践中的洞察,并探讨未来…

    2025年11月11日
    8000