BOOM框架
-
清华&伯克利联手突破:BOOM框架让具身智能性能翻倍,世界模型+强化学习实现双向奔赴
具身智能的样本效率瓶颈 在具身智能(Embodied AI)的快速发展中,样本效率已成为制约智能体从实验室环境走向复杂开放世界的瓶颈问题。 不同于纯数字域的对话任务,具身任务通常涉及极度复杂的物理环境感知以及高维度的连续控制输出。这意味着智能体面临着巨大的状态-动作搜索空间,导致学习效率低下且难以收敛。 传统的无模型强化学习由于缺乏对底层物理逻辑的理解,完全…