KV缓存
-
微信AI突破扩散模型推理瓶颈:WeDLM实现vLLM部署3倍加速,低熵场景超10倍
腾讯微信 AI 团队提出 WeDLM(WeChat Diffusion Language Model),通过在标准因果注意力下实现扩散式解码,在数学推理等任务上实现相比 vLLM 部署的 AR 模型 3 倍以上加速,低熵场景更可达 10 倍以上,同时保持甚至提升生成质量。 引言 自回归(AR)生成是当前大语言模型的主流解码范式,但其逐 token 生成的特性…
腾讯微信 AI 团队提出 WeDLM(WeChat Diffusion Language Model),通过在标准因果注意力下实现扩散式解码,在数学推理等任务上实现相比 vLLM 部署的 AR 模型 3 倍以上加速,低熵场景更可达 10 倍以上,同时保持甚至提升生成质量。 引言 自回归(AR)生成是当前大语言模型的主流解码范式,但其逐 token 生成的特性…