VLA模型
-
蚂蚁灵波开源最强具身智能大脑LingBot-VLA:20000小时真实数据验证Scaling Law,实现“一个大脑,多个身体”
从3000小时到20000小时:真实数据验证Scaling Law 从3000小时到整整20000小时。 真实世界数据中的Scaling Law,直接催生了一个强大的VLA(视觉-语言-动作)基座模型! 这就是蚂蚁灵波最新开源的具身智能基座模型——LingBot-VLA。 为何称其为当前最强?首先看数据。 仅从“20000小时”这个规模来看,LingBot-…
-
突破数据孤岛:Being-H0.5全栈开源具身模型以3.5万小时训练实现跨机器人零样本技能迁移
BeingBeyond团队 投稿 量子位 | 公众号 QbitAI 近年来爆火的具身智能领域长期面对着数据孤立导致的训练困境,一线厂商凭借高投入建立独属于自研型号机器的“数据护城河”,而小厂的资产规模直接反映在数据体量上,限制了其产品专用模型的训练。 BeingBeyond团队 近日发布的Being-H0.5有望改变这一局面。 Being-H0.5是目前训练…
-
VLA强化学习新范式:从星动纪元iRe-VLA到π*0.6的迭代式突破
在具身智能领域,视觉-语言-动作(VLA)模型正成为连接大语言模型与物理世界的关键桥梁。近期,Physical Intelligence发布的π*0.6论文与清华大学星动纪元团队的iRe-VLA研究,共同揭示了VLA模型通过在线强化学习实现自我改进的技术路径,标志着该领域从单纯模仿学习向自主探索的范式转变。 VLA模型的核心挑战在于如何将预训练的视觉-语言大…
-
共享自主框架突破灵巧操作数据瓶颈:字节跳动Seed团队VLA策略研究深度解析
实现通用机器人的类人灵巧操作能力,始终是机器人学领域最具挑战性的前沿课题。传统机器人系统在结构化环境中表现稳定,但面对复杂、非结构化的日常场景时,其操作灵活性、适应性和泛化能力严重不足。近年来,视觉-语言-动作(Vision-Language-Action,VLA)模型通过融合多模态感知与自然语言理解,为机器人技能学习开辟了新路径,展现出从单一任务执行向通用…
-
GigaWorld-0:世界模型驱动VLA性能跃升300%,具身智能迈入数据高效新纪元
在具身智能迈向开放世界落地的进程中,长期制约其发展的核心瓶颈并非算法本身,而是高质量、大规模真实机器人交互数据的极度稀缺。真机数据采集成本高昂、周期漫长,且难以覆盖多样化的开放场景,严重限制了视觉语言动作(VLA)大模型的规模化训练与泛化能力。传统仿真方法虽能快速生成数据,却受限于显著的Sim-to-Real差距,难以支撑真实世界的鲁棒部署。世界模型(Wor…