VLA强化学习新范式:从星动纪元iRe-VLA到π*0.6的迭代式突破

具身智能领域,视觉-语言-动作(VLA)模型正成为连接大语言模型与物理世界的关键桥梁。近期,Physical Intelligence发布的π*0.6论文与清华大学星动纪元团队的iRe-VLA研究,共同揭示了VLA模型通过在线强化学习实现自我改进的技术路径,标志着该领域从单纯模仿学习向自主探索的范式转变。

VLA强化学习新范式:从星动纪元iRe-VLA到π*0.6的迭代式突破

VLA模型的核心挑战在于如何将预训练的视觉-语言大模型(如BLIP-2、GPT-4V)的能力有效迁移到机器人控制任务中。传统方法主要依赖监督微调(SFT),通过人类示范数据教会机器人执行特定动作。然而,这种方法的局限性显而易见:机器人只能复现已有数据中的行为模式,面对未知环境或复杂任务时缺乏适应能力。正如π*0.6论文所强调的,模仿学习能让机器人完成基本动作,但实现高鲁棒性、持久性的工作能力,必须引入强化学习的探索机制。

VLA强化学习新范式:从星动纪元iRe-VLA到π*0.6的迭代式突破

强化学习在VLA模型中的应用面临三大核心难题。首先是环境差异问题:与聊天机器人基于离线数据集的训练不同,物理机器人需要在实时环境中探索,任务周期长、奖励稀疏(通常只有完成整套动作才能获得正向反馈),导致学习效率低下。其次是模型稳定性问题:直接对数十亿参数的VLA模型进行在线强化学习,极易引发灾难性遗忘或训练崩溃,使模型性能甚至倒退至微调前水平。最后是算力约束问题:在本地机器人控制器上对大规模模型进行全梯度更新,远超当前硬件算力极限。

VLA强化学习新范式:从星动纪元iRe-VLA到π*0.6的迭代式突破

针对这些挑战,行业出现了三种技术路径。外挂式干预方案(如V-GPS、DSRL)通过训练辅助价值函数或优化扩散模型输入噪声来引导冻结的VLA模型,虽能保持模型稳定,但未触及模型本质改进。暴力美学方案(如VLAC)直接使用PPO等算法全量微调VLA,虽理论完整但面临稳定性与算力双重压力。而星动纪元iRe-VLA与π*0.6代表的第三种路径——探索到内化的循环迭代机制——正在成为最具前景的解决方案。

VLA强化学习新范式:从星动纪元iRe-VLA到π*0.6的迭代式突破

iRe-VLA的创新之处在于其两阶段交替学习架构。第一阶段,模型冻结VLM主干参数,仅训练轻量级动作输出层(Action Head)进行在线强化学习探索。这种设计巧妙规避了大模型直接强化学习的不稳定性,同时大幅降低计算需求,使单张4090显卡即可支持训练。机器人通过试错积累成功轨迹数据,形成初步的任务解决能力。

VLA强化学习新范式:从星动纪元iRe-VLA到π*0.6的迭代式突破

第二阶段则转向监督学习内化。模型解冻VLM主干,利用第一阶段收集的高价值轨迹数据对整个模型(包括LoRA适配参数)进行微调,将探索获得的能力固化为模型的固有知识。这种动静结合的策略既保证了探索阶段的稳定性,又实现了能力的内化升华,形成“探索-内化-再探索”的良性循环。

VLA强化学习新范式:从星动纪元iRe-VLA到π*0.6的迭代式突破

值得注意的是,iRe-VLA在模型架构设计上体现了精妙的工程思维。其将VLA模型分解为VLM主干(大脑)和动作输出层(四肢),前者负责感知与理解,后者专司控制与执行。通过LoRA技术对主干进行参数高效微调,既保留了预训练模型的世界知识,又实现了任务特定适应。这种模块化设计为后续迭代升级提供了灵活框架。

VLA强化学习新范式:从星动纪元iRe-VLA到π*0.6的迭代式突破

π*0.6论文引用了iRe-VLA工作,表明中美研究团队在VLA强化学习方向上形成了技术共鸣。两者都认识到单纯模仿学习的局限,都致力于通过在线交互实现模型自主进化。不同的是,π*0.6更侧重于迭代式强化学习的理论框架,而iRe-VLA则提供了具体的工程实现方案。这种互补关系推动了整个领域的技术进步。

VLA强化学习新范式:从星动纪元iRe-VLA到π*0.6的迭代式突破

从技术演进趋势看,VLA+在线RL正成为具身智能的核心研究方向。其价值不仅在于提升单个任务的完成率,更在于建立机器人持续学习、自主适应的通用能力框架。随着算力提升和算法优化,未来VLA模型有望实现从特定任务专家到通用物理世界智能体的跨越。

VLA强化学习新范式:从星动纪元iRe-VLA到π*0.6的迭代式突破

当前研究仍面临诸多挑战。如何设计更高效的探索策略以减少试错成本?如何平衡模型稳定性与学习效率?如何将单任务能力泛化为多任务通用能力?这些问题的解决需要算法、硬件、数据的协同突破。但可以确定的是,以iRe-VLA和π*0.6为代表的技术路径,已经为VLA模型的强化学习应用开辟了切实可行的道路。

— 图片补充 —

VLA强化学习新范式:从星动纪元iRe-VLA到π*0.6的迭代式突破

VLA强化学习新范式:从星动纪元iRe-VLA到π*0.6的迭代式突破

VLA强化学习新范式:从星动纪元iRe-VLA到π*0.6的迭代式突破

VLA强化学习新范式:从星动纪元iRe-VLA到π*0.6的迭代式突破

VLA强化学习新范式:从星动纪元iRe-VLA到π*0.6的迭代式突破

VLA强化学习新范式:从星动纪元iRe-VLA到π*0.6的迭代式突破

VLA强化学习新范式:从星动纪元iRe-VLA到π*0.6的迭代式突破

VLA强化学习新范式:从星动纪元iRe-VLA到π*0.6的迭代式突破

VLA强化学习新范式:从星动纪元iRe-VLA到π*0.6的迭代式突破

VLA强化学习新范式:从星动纪元iRe-VLA到π*0.6的迭代式突破

VLA强化学习新范式:从星动纪元iRe-VLA到π*0.6的迭代式突破


关注“鲸栖”小程序,掌握最新AI资讯

本文来自网络搜集,不代表鲸林向海立场,如有侵权,联系删除。转载请注明出处:http://www.itsolotime.com/archives/7128

(0)
上一篇 2025年12月12日 上午11:01
下一篇 2025年12月12日 下午12:30

相关推荐

  • ChatGPT广告化:OpenAI商业化转型与用户隐私的博弈

    这一天终于还是来了。 周六凌晨,OpenAI 的一则公告引起轩然大波:他们计划在 ChatGPT 里加广告了。 对此,网友们感到很受伤。有人表示,现在大家用大模型的一个重要原因就是能够避免广告,更好地查询信息,现在 ChatGPT 又把广告加回来是几个意思? 也有人认为,加广告的这件事表明了 OpenAI 目前的营收压力很大。 华盛顿大学教授荣誉退休教授、知…

    2026年1月17日
    12700
  • PD-NCA:开放式人工生命演化的新范式——多智能体竞争驱动的复杂性涌现

    人工生命(Artificial Life, ALife)研究长期致力于探索一个根本性问题:生命的复杂性能否在计算系统中自然涌现?这一探索的核心目标被称为开放式复杂化(open-ended complexification),旨在让人工系统能够像生物世界一样,在持续的适应与演化中自发产生新的结构与功能。近年来,神经细胞自动机(Neural Cellular A…

    2025年11月5日
    8400
  • Gemini负责人揭秘:Pro模型竟是Flash的“蒸馏器”,后训练与持续学习成AI进化新战场

    2025年底,AI领域最引人注目的事件之一是Gemini 3 Flash的发布。这款模型主打轻量级与高速度,其智能表现不仅全面超越了前代Gemini 2.5 Pro,甚至在编程能力和多模态推理等部分性能上反超了Gemini 3 Pro与GPT-5.2,表现令人惊艳。 就在近日,Gemini的三位联合技术负责人——Oriol Vinyals、Jeff Dean…

    2025年12月21日
    13500
  • 李飞飞发布全新世界模型,单GPU就能跑!实时生成永不消逝的3D宇宙

    “AI教母”李飞飞创办的 World Labs 于 2025 年 10 月 16 日正式发布新一代实时生成式世界模型 RTFM(Real-Time Frame Model)。该模型仅用单张消费级 H100 GPU 即可在交互帧率下持续渲染出物理真实、3D 一致且永久存在的虚拟世界,首次把“世界模型”推到了人人都能实时体验的门槛。RTFM 采用自回归扩散 Transformer 架构,不依赖显式 3D 表征,而是从海量视频里端到端“学会渲染”,支持单张或多张 2D 照片生成可无限漫游的 3D 场景。论文、代码与 DEMO 同步上线,被视为空间智能赛道的又一次“ChatGPT 时刻”

    2025年10月17日
    17700
  • OpenAI首席财务官与投资人揭秘:2026年AI三大趋势与算力变现之道

    OpenAI首席财务官与投资人展望2026:多智能体、算力变现与行业变革 OpenAI首席财务官Sarah Friar与著名投资人Vinod Khosla在最新播客中,深入探讨了2026年AI发展的核心趋势。 讨论涵盖广泛,包括多智能体系统即将正式登场、AI行业如何将算力转化为收入、大模型能力的边界突破,以及对医疗健康与具身智能等领域的深远影响。 此次访谈的…

    2026年1月21日
    11100

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注