VLA强化学习新范式:从星动纪元iRe-VLA到π*0.6的迭代式突破

具身智能领域,视觉-语言-动作(VLA)模型正成为连接大语言模型与物理世界的关键桥梁。近期,Physical Intelligence发布的π*0.6论文与清华大学星动纪元团队的iRe-VLA研究,共同揭示了VLA模型通过在线强化学习实现自我改进的技术路径,标志着该领域从单纯模仿学习向自主探索的范式转变。

VLA强化学习新范式:从星动纪元iRe-VLA到π*0.6的迭代式突破

VLA模型的核心挑战在于如何将预训练的视觉-语言大模型(如BLIP-2、GPT-4V)的能力有效迁移到机器人控制任务中。传统方法主要依赖监督微调(SFT),通过人类示范数据教会机器人执行特定动作。然而,这种方法的局限性显而易见:机器人只能复现已有数据中的行为模式,面对未知环境或复杂任务时缺乏适应能力。正如π*0.6论文所强调的,模仿学习能让机器人完成基本动作,但实现高鲁棒性、持久性的工作能力,必须引入强化学习的探索机制。

VLA强化学习新范式:从星动纪元iRe-VLA到π*0.6的迭代式突破

强化学习在VLA模型中的应用面临三大核心难题。首先是环境差异问题:与聊天机器人基于离线数据集的训练不同,物理机器人需要在实时环境中探索,任务周期长、奖励稀疏(通常只有完成整套动作才能获得正向反馈),导致学习效率低下。其次是模型稳定性问题:直接对数十亿参数的VLA模型进行在线强化学习,极易引发灾难性遗忘或训练崩溃,使模型性能甚至倒退至微调前水平。最后是算力约束问题:在本地机器人控制器上对大规模模型进行全梯度更新,远超当前硬件算力极限。

VLA强化学习新范式:从星动纪元iRe-VLA到π*0.6的迭代式突破

针对这些挑战,行业出现了三种技术路径。外挂式干预方案(如V-GPS、DSRL)通过训练辅助价值函数或优化扩散模型输入噪声来引导冻结的VLA模型,虽能保持模型稳定,但未触及模型本质改进。暴力美学方案(如VLAC)直接使用PPO等算法全量微调VLA,虽理论完整但面临稳定性与算力双重压力。而星动纪元iRe-VLA与π*0.6代表的第三种路径——探索到内化的循环迭代机制——正在成为最具前景的解决方案。

VLA强化学习新范式:从星动纪元iRe-VLA到π*0.6的迭代式突破

iRe-VLA的创新之处在于其两阶段交替学习架构。第一阶段,模型冻结VLM主干参数,仅训练轻量级动作输出层(Action Head)进行在线强化学习探索。这种设计巧妙规避了大模型直接强化学习的不稳定性,同时大幅降低计算需求,使单张4090显卡即可支持训练。机器人通过试错积累成功轨迹数据,形成初步的任务解决能力。

VLA强化学习新范式:从星动纪元iRe-VLA到π*0.6的迭代式突破

第二阶段则转向监督学习内化。模型解冻VLM主干,利用第一阶段收集的高价值轨迹数据对整个模型(包括LoRA适配参数)进行微调,将探索获得的能力固化为模型的固有知识。这种动静结合的策略既保证了探索阶段的稳定性,又实现了能力的内化升华,形成“探索-内化-再探索”的良性循环。

VLA强化学习新范式:从星动纪元iRe-VLA到π*0.6的迭代式突破

值得注意的是,iRe-VLA在模型架构设计上体现了精妙的工程思维。其将VLA模型分解为VLM主干(大脑)和动作输出层(四肢),前者负责感知与理解,后者专司控制与执行。通过LoRA技术对主干进行参数高效微调,既保留了预训练模型的世界知识,又实现了任务特定适应。这种模块化设计为后续迭代升级提供了灵活框架。

VLA强化学习新范式:从星动纪元iRe-VLA到π*0.6的迭代式突破

π*0.6论文引用了iRe-VLA工作,表明中美研究团队在VLA强化学习方向上形成了技术共鸣。两者都认识到单纯模仿学习的局限,都致力于通过在线交互实现模型自主进化。不同的是,π*0.6更侧重于迭代式强化学习的理论框架,而iRe-VLA则提供了具体的工程实现方案。这种互补关系推动了整个领域的技术进步。

VLA强化学习新范式:从星动纪元iRe-VLA到π*0.6的迭代式突破

从技术演进趋势看,VLA+在线RL正成为具身智能的核心研究方向。其价值不仅在于提升单个任务的完成率,更在于建立机器人持续学习、自主适应的通用能力框架。随着算力提升和算法优化,未来VLA模型有望实现从特定任务专家到通用物理世界智能体的跨越。

VLA强化学习新范式:从星动纪元iRe-VLA到π*0.6的迭代式突破

当前研究仍面临诸多挑战。如何设计更高效的探索策略以减少试错成本?如何平衡模型稳定性与学习效率?如何将单任务能力泛化为多任务通用能力?这些问题的解决需要算法、硬件、数据的协同突破。但可以确定的是,以iRe-VLA和π*0.6为代表的技术路径,已经为VLA模型的强化学习应用开辟了切实可行的道路。

— 图片补充 —

VLA强化学习新范式:从星动纪元iRe-VLA到π*0.6的迭代式突破

VLA强化学习新范式:从星动纪元iRe-VLA到π*0.6的迭代式突破

VLA强化学习新范式:从星动纪元iRe-VLA到π*0.6的迭代式突破

VLA强化学习新范式:从星动纪元iRe-VLA到π*0.6的迭代式突破

VLA强化学习新范式:从星动纪元iRe-VLA到π*0.6的迭代式突破

VLA强化学习新范式:从星动纪元iRe-VLA到π*0.6的迭代式突破

VLA强化学习新范式:从星动纪元iRe-VLA到π*0.6的迭代式突破

VLA强化学习新范式:从星动纪元iRe-VLA到π*0.6的迭代式突破

VLA强化学习新范式:从星动纪元iRe-VLA到π*0.6的迭代式突破

VLA强化学习新范式:从星动纪元iRe-VLA到π*0.6的迭代式突破

VLA强化学习新范式:从星动纪元iRe-VLA到π*0.6的迭代式突破


关注“鲸栖”小程序,掌握最新AI资讯

本文由鲸栖原创发布,未经许可,请勿转载。转载请注明出处:http://www.itsolotime.com/archives/7128

(0)
上一篇 2025年12月12日 上午11:01
下一篇 2025年12月12日 下午2:17

相关推荐

  • 突破计算瓶颈:SIE+CCSD(T)量子嵌入框架实现真实材料体系实验级精度模拟

    在当代科学研究中,计算模拟已成为探索物质世界不可或缺的工具。从药物分子设计到新型材料开发,科学家们越来越依赖计算机进行“虚拟实验”,以预测原子、分子层面的相互作用与性质。然而,模拟的精度直接决定了预测的可靠性——一个微小的计算误差可能导致催化剂被误判无效,或使材料性能预测完全偏离实际,这不仅浪费数年实验时间,更可能让巨额研发投资付诸东流。 传统高精度量子化学…

    2025年11月9日
    100
  • AI外教革命:斑马口语如何用“千人千面”技术重塑儿童英语教育

    在人工智能技术快速发展的今天,教育领域正迎来一场深刻的变革。其中,儿童英语口语学习作为长期存在痛点的细分市场,率先成为AI技术落地的试验田。斑马口语作为一款专为儿童设计的AI外教产品,不仅展现了技术应用的成熟度,更揭示了AI在教育个性化领域的巨大潜力。 从技术架构层面分析,斑马口语的核心突破在于其基于猿力大模型的智能基座。与ChatGPT等通用大模型不同,猿…

    2025年11月18日
    400
  • 2025人工智能年度榜单深度解析:从评选标准看AI产业演进趋势

    随着2025年人工智能年度榜单申报进入倒计时阶段,这一已持续八年的行业盛事再次成为科技界关注的焦点。八年间,人工智能技术从实验室走向产业化,从概念验证到规模化应用,榜单的演变轨迹恰恰映射了整个产业的成长脉络。本次评选从企业、产品、人物三大维度设立五类奖项,不仅是对过去一年成就的总结,更是对未来发展趋势的预判。 从企业维度来看,榜单设置了“领航企业”和“潜力创…

    2025年11月15日
    200
  • 谷歌AI逆袭:从官僚困局到Gemini崛起,创始人回归如何重塑竞争格局

    2022年底ChatGPT的横空出世,无疑在科技行业投下了一颗震撼弹。这场由OpenAI引领的对话式AI革命,不仅重新定义了人机交互的边界,更对长期深耕AI领域的巨头谷歌构成了前所未有的挑战。彼时的谷歌,尽管拥有十余年的技术积累与DeepMind等顶尖团队,却在产品化响应上显得迟缓,甚至被外界贴上了“反应慢”“优势不再”的标签。匆忙推出的Bard未能扭转局势…

    2025年11月25日
    500
  • MiMo-Embodied:全球首个跨具身基座模型的技术突破与产业影响

    在人工智能技术快速演进的当下,具身智能与自动驾驶作为两大前沿领域,长期面临着知识迁移与能力统一的挑战。传统视觉语言模型(VLMs)往往局限于单一场景——要么专注于室内机器人操作,要么聚焦于户外驾驶任务,这种割裂状态严重制约了智能体在动态物理世界中的综合交互能力。近日,小米汽车陈龙团队开源了全球首个打通自动驾驶与具身操作场景的跨具身(X-Embodied)基座…

    2025年11月25日
    500

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注