AI产业动态
-
摩尔线程LiteGS开源:以全栈协同优化攻克3DGS训练瓶颈,为具身智能提供高效三维建模引擎
2025年12月,在香港举办的SIGGRAPH Asia 2025大会上,一场聚焦3D Gaussian Splatting(3DGS)重建技术的国际挑战赛结果揭晓。中国芯片与计算公司摩尔线程凭借其自研的3DGS基础库LiteGS,在3DGS重建挑战赛中脱颖而出,荣获银奖。这一成绩不仅是对其算法与工程能力的认可,更标志着国产计算技术在神经渲染这一前沿领域已具…
-
Vidu Agent深度评测:AI视频创作从“片段生成”到“专业拍片”的范式革命
2025年,视频生成AI领域正经历着前所未有的技术竞赛。谷歌Veo 3、OpenAI Sora 2、Runway Gen-4.5以及本土的Vidu等模型相继推出,参数规模不断刷新纪录,演示视频一个比一个惊艳。然而,在这场看似繁荣的技术狂欢背后,一个根本性问题逐渐浮出水面:AI能够生成高质量的视频片段,但真正“会拍片”的模型仍然凤毛麟角。创意如何系统化拆解?镜…
-
摩尔线程LiteGS斩获SIGGRAPH Asia银奖:3D高斯溅射技术突破60秒高质量重建极限
在近期于香港举办的SIGGRAPH Asia 2025国际图形学顶级学术会议上,摩尔线程凭借其自主研发的3D高斯溅射(3DGS)基础库LiteGS,在3DGS重建挑战赛中荣获银奖。这一成就不仅展示了摩尔线程在算法创新与软硬件协同优化方面的深厚实力,也标志着该公司在新一代图形渲染技术领域获得了学术界的高度认可。 3D高斯溅射作为2023年提出的革命性三维场景表…
-
英伟达Nemotron 3:从硬件霸主到开源颠覆者的战略突袭
2025年底,AI产业的竞争格局正在发生深刻变革。作为长期占据硬件生态顶端的英伟达,在12月15日正式宣布推出Nemotron 3开源模型家族(Nano/Super/Ultra),其中Nano版本已率先发布,Super和Ultra版本则规划于2026年上半年面世。这一举动标志着英伟达不再满足于仅仅扮演“卖铲人”的角色,而是直接下场参与“挖矿”竞赛,其战略意图…
-
神经符号融合:通往AGI的第三条道路,还是技术折衷的“双头怪兽”?
在人工智能发展的历史长河中,符号主义与连接主义两大范式长期处于对立与交替主导的态势。符号AI曾凭借其严谨的逻辑规则体系,在早期AI研究中占据统治地位;而神经网络则通过数据驱动的学习范式,在深度学习浪潮中实现了颠覆性突破。然而,当大模型展现出惊人能力的同时,其固有的局限性——如幻觉问题、逻辑推理薄弱、可解释性差等——也日益凸显。这促使学界重新审视:单一范式是否…
-
从AI作曲到智能创作中心:酷睿Ultra如何重塑PC的AI生产力边界
在数字内容创作日益普及的今天,AI技术正以前所未有的深度渗透到创意生产的各个环节。近期,QQ音乐推出的“AI作歌”功能,凭借其简洁的操作流程和本地化推理能力,引发了广泛关注。用户只需点击界面中的AI作歌按钮,输入创作灵感并选择曲风,系统便能在几分钟内生成包含完整结构的歌词与旋律。这一功能不仅降低了音乐创作的门槛,更揭示了AI PC作为新一代计算平台在重塑个人…
-
多模态记忆革命:MemVerse如何重塑智能体的认知架构
在人工智能向通用智能体演进的关键阶段,记忆系统正面临从文本堆叠到多模态融通的范式跃迁。传统基于纯文本的记忆库已无法满足智能体与高维世界交互的需求——一张产品设计图、一段用户操作录屏、一次包含语音和演示的线上会议,这些由图像、声音、视频构成的业务信息,正成为驱动AI创造价值的关键来源。智能体的记忆不应是扁平的文本日志,而应是一个能记录并关联“在何时、看到了何物…
-
医疗AI新突破:CA-GPT系统在心脏介入手术决策中完胜ChatGPT-5,RAG+DeepSeek架构重塑垂直领域智能化标准
在通用大模型(LLM)席卷全球的浪潮中,医疗垂直领域始终被视为AI落地的“硬骨头”。虽然ChatGPT在USMLE(美国执业医师资格考试)等标准化测试中表现优异,但在需要精准判断和实时决策的临床场景中,通用大模型的局限性日益凸显。近日,一项由空军军医大学唐都医院李妍教授团队与深圳清华大学研究院朱锐团队联合完成的COMPARE研究在arXiv预印本平台发表,研…
-
MUSE框架:为推荐系统植入多模态海马体,唤醒十万级沉睡数据
在当今数字时代,用户在网络平台留下的每一个足迹——每一次点击、收藏、购买——都构成了其数字身份的重要记忆片段。然而,当前主流推荐系统普遍面临着一个严峻挑战:它们患有严重的“短期健忘症”。受限于计算资源、存储成本和实时性要求,这些系统往往只能处理用户最近数千条行为数据,而将那些沉睡在数年前的历史记录粗暴截断或遗忘。即便部分系统尝试召回这些长期行为,传统基于ID…
-
EfficientFlow:融合等变建模与流匹配,破解生成式策略学习效率瓶颈
生成式模型在机器人与具身智能领域正迅速崛起,成为从高维视觉观测直接生成复杂动作策略的重要范式。这类方法在操作、抓取等任务中展现出卓越的灵活性与适应性,然而在真实系统部署时,却面临两大根本性挑战:一是训练过程极度依赖大规模演示数据,数据获取成本高昂且标注困难;二是推理阶段需要大量迭代计算,导致动作生成延迟严重,难以满足实时控制需求。这些瓶颈严重制约了生成式策略…