提示注入攻击

  • PromptLocate:大模型安全防御的精准手术刀——首个能定位并清除提示注入攻击的工具深度解析

    在人工智能技术迅猛发展的今天,大模型的安全性问题日益凸显,其中提示注入攻击已成为威胁模型可靠性的核心挑战之一。近日,杜克大学与宾州州立大学联合研究团队推出的PromptLocate工具,标志着大模型安全防御迈入了精准定位与主动修复的新阶段。该工具不仅能检测数据污染,更能精准定位恶意内容的具体位置,实现数据净化和攻击溯源,为大模型的安全部署与应用提供了关键技术…

    2025年10月24日
    200
  • 学术界的隐形操控:大模型审稿中的隐藏提示注入攻击及其对科研诚信的挑战

    在人工智能技术快速渗透学术评审领域的当下,一项发表于arXiv平台(编号:arXiv:2509.10248v2)的研究《Prompt Injection Attacks on LLM Generated Reviews of Scientific Publications》揭示了令人警醒的现象:通过精心设计的“隐藏提示注入”技术,攻击者能够系统性操控大语言模…

    2025年9月25日
    200
  • 大模型安全危机全景:从攻击引擎到系统性漏洞的深度剖析

    随着人工智能技术的飞速发展,大型语言模型(LLM)已从辅助工具演变为网络攻击链条的核心引擎,其安全风险正从传统领域向科研、自动化交互等细分场景快速渗透。本周披露的多项研究揭示了这一趋势的严峻性:从LLM自主生成多态勒索软件颠覆传统防御逻辑,到训练数据污染引发主流模型批量嵌入恶意URL;从AI生成钓鱼邮件点击率大幅提升,到提示注入攻击在同行评审、AI智能体等场…

    2025年9月5日
    200
  • 大语言模型安全攻防新纪元:从认知退化到供应链风险的全面解析

    近期,多篇学术论文集中探讨了大语言模型(LLM)在安全攻防领域的前沿进展,揭示了从提示注入、资源消耗到认知退化、供应链风险的全方位挑战与创新解决方案。这些研究不仅展现了LLM在构建防御体系中的巨大潜力,也深刻暴露了其在推理逻辑、系统稳定性及依赖生态中存在的结构性脆弱点,为重新划定AI安全边界提供了关键的理论与实践视角。 **一、 核心安全漏洞与攻击范式演进*…

    2025年7月25日
    200