漏洞检测
-
AI黑客团队Strix:一周狂揽8K星,用多智能体协同渗透测试颠覆传统安全扫描
AI黑客团队Strix:一周狂揽8K星,用多智能体协同渗透测试颠覆传统安全扫描 近日,一个名为 Strix 的开源项目在 GitHub 上迅速走红,凭借其创新的理念在一周内就获得了近 8K 的 Star。 Strix 的理念与传统安全扫描工具有本质区别。它并非一个简单的规则匹配引擎,而是通过模拟真实黑客的思考和行为方式,让 AI 在网站或应用中主动寻找漏洞。…
-
大模型安全前沿:漏洞检测与文本识别的新突破与挑战
在人工智能技术飞速发展的今天,大模型安全已成为学术界与工业界共同关注的焦点。本周,尽管相关研究成果数量有限,但每一项进展都深刻影响着大模型安全生态的构建。从漏洞检测到机器生成文本识别,再到对抗性攻击防御,这些研究不仅揭示了当前技术的局限性,更为未来安全框架的设计提供了关键思路。本文将深入分析两项核心研究,并探讨其在大模型安全领域的实际意义与潜在影响。 ###…
-
GPT-5驱动的Aardvark:92%漏洞命中率,开启AI安全自动化新纪元
OpenAI近日推出了名为Aardvark的自主安全研究智能体,该智能体由GPT-5驱动,旨在自动发现并修复软件代码中的安全漏洞。 目前,Aardvark处于beta测试阶段。OpenAI将其定位为一种“防御者优先”的新范式,能够随代码库的演化为开发团队提供持续的保护。 根据OpenAI披露的数据,在标准代码库的基准测试中,Aardvark对已知漏洞与人工植…
-
CyberGym:从实验室游戏到实战检验——AI安全评估的范式革命
在人工智能技术加速渗透软件安全领域的当下,一个根本性挑战日益凸显:如何科学评估AI智能体在真实复杂网络环境中的安全防御能力?传统评估框架往往陷入“纸上谈兵”的困境,难以反映工业级代码库中漏洞的隐蔽性与复杂性。近日,加州大学伯克利分校研究团队发布的CyberGym框架,基于188个开源项目的1507个真实漏洞构建了首个大规模实战化评估平台,标志着AI安全评估从…