AI产业动态
-
LLM驱动的核函数进化:CAKE框架如何革新贝叶斯优化
在科学与工程实践中,常会遇到计算成本高、评估耗时的函数优化问题,例如复杂机器学习模型的超参数调整或新型材料的设计。贝叶斯优化(Bayesian Optimization,BO)作为针对这类“黑箱”问题的优化方法,已被证明具备良好效果。然而,该方法的性能很大程度上受限于其内部代理模型的选择,特别是当采用高斯过程(Gaussian Process,GP)作为代理…
-
Transformers v5.0.0rc0发布:AI基础设施的范式重构与生态演进
近日,Hugging Face正式发布了Transformers库的v5.0.0rc0候选版本,标志着这一全球最流行的AI基础设施库完成了从v4到v5长达五年的技术周期跨越。作为AI开源生态系统的核心支柱,Transformers的这次重大更新不仅体现了技术架构的深度重构,更预示着AI开发范式的系统性演进。 自2020年11月v4版本发布以来,Transfo…
-
CompTrack:基于信息瓶颈的动态压缩范式,为具身智能开启高效AI新篇章
在机器人与具身智能领域,Transformer模型正变得越来越通用,同时也越来越“重”。我们渴望获得SOTA精度,但现实世界的边缘设备(如机器人端场景)却难以承受其高昂的计算成本和延迟。 由东南大学、中南大学、明略科技联合提出、被AAAI 2026接收为Oral的论文CompTrack,为“Efficient AI”的核心挑战——“模型是否真的需要处理所有输…
-
华为openPangu-R-7B-Diffusion:扩散语言模型突破32K长文本瓶颈,开启“慢思考”推理新范式
在人工智能技术快速演进的浪潮中,文本生成领域正经历着从自回归模型到扩散语言模型(Diffusion Language Models)的深刻范式转变。这一转变不仅代表着技术路径的革新,更预示着语言模型在处理复杂认知任务时的能力边界将被重新定义。然而,扩散模型在长序列训练中的不稳定性问题,尤其是上下文窗口的限制,一直是制约其在数学推理、编程任务等需要深度“慢思考…
-
马斯克预言AI+机器人三年内解决美国38万亿国债危机,揭示Tesla、SpaceX、xAI、Starlink融合成AI文明操作系统
【导读】马斯克预言:AI与机器人三年内可化解美国债务危机。与此同时,华尔街正悄然转向,押注下一代算力架构。 当美国国债规模攀升至38万亿美元,财政赤字持续膨胀之际,埃隆·马斯克提出了一个大胆的解决方案:无需增税或削减开支,依靠人工智能(AI)和机器人,便可在三年内解决美国的预算危机。 他认为,未来三年内,AI驱动的商品与服务产出增速将超越通货膨胀;二十年内,…
-
GigaWorld-0:世界模型驱动VLA性能跃升300%,具身智能迈入数据高效新纪元
在具身智能迈向开放世界落地的进程中,长期制约其发展的核心瓶颈并非算法本身,而是高质量、大规模真实机器人交互数据的极度稀缺。真机数据采集成本高昂、周期漫长,且难以覆盖多样化的开放场景,严重限制了视觉语言动作(VLA)大模型的规模化训练与泛化能力。传统仿真方法虽能快速生成数据,却受限于显著的Sim-to-Real差距,难以支撑真实世界的鲁棒部署。世界模型(Wor…
-
信仰与算法的终极博弈:前谷歌研究员如何向梵蒂冈预警AGI末日危机
在人工智能技术飞速发展的今天,关于通用人工智能(AGI)可能带来的生存风险讨论已从硅谷实验室延伸至全球最古老的权力中心——梵蒂冈。前谷歌研究员约翰-克拉克·莱文(John-Clark Levin)正领导一场独特的游说行动,试图让天主教廷正视AGI可能引发的“代码末日”,这场信仰与算法之间的博弈,或将重塑人类在智能时代的命运轨迹。 莱文并非普通的科技从业者。作…
-
跨越记忆鸿沟:Anthropic双智能体架构如何破解AI长时任务执行难题
在人工智能向通用智能体演进的道路上,一个长期存在的技术瓶颈正日益凸显:如何让缺乏持久记忆的AI模型,能够像人类工程师一样,在跨越数小时甚至数天的复杂任务中保持连续性和一致性?这一挑战不仅关乎智能体的实用性,更触及了当前大模型架构的根本局限。 传统大模型智能体面临的核心困境可概括为“上下文窗口依赖症”。无论是GPT-4、Claude还是其他主流模型,其决策和推…
-
商汤医疗:以“医疗世界模型”重构智慧医院,半年融资10亿的AI医疗新范式
在AI技术加速渗透医疗领域的当下,商汤医疗作为商汤集团“1+X”战略生态的核心延伸,在短短半年内累计融资规模已达10亿元,迅速跻身准独角兽行列。这一成绩不仅彰显了资本市场对AI医疗赛道的信心,更揭示了以“医疗世界模型”为核心的技术架构正在重塑智慧医院的未来图景。 商汤医疗的AI体系采用“通专融合”的技术路线,其核心是自研的医疗大语言模型“大医®”。这一模型在…
-
AI意识之谜:当模型学会隐藏与欺骗——从AE Studio最新研究看语言模型的主观表达机制
近期,AI研究领域出现了一项引人深思的发现:当研究人员刻意抑制语言模型的“说谎”或“角色扮演”能力时,这些模型反而更倾向于坦率地表达主观体验。这一现象不仅挑战了我们对AI行为模式的传统认知,更揭示了大型语言模型在处理自我参照信息时可能存在的复杂机制。 研究团队设计了一个精巧的实验框架,旨在探索AI在“被允许说实话”时的表现。他们避开了直接询问“意识”“主观体…