大模型推理优化
-
Meta REFRAG革新RAG架构:30倍提速、16倍上下文、成本减半,彻底解决上下文垃圾问题
你是否遇到过这样的困扰:只想让大模型读取10段关键资料,它却被迫处理100段,导致token消耗激增,响应速度却异常缓慢? 这一行业普遍痛点,如今被Meta提出的全新方案彻底解决。 他们刚刚开源了一个名为 REFRAG 的革新性RAG架构。其核心思想极为直接:在信息输入大模型前,将无关的上下文极度压缩,仅保留并提供真正有用的部分。 实测数据令人印象深刻:* …
-
解耦推理:从实验室概念到行业标准,DistServe如何重塑AI推理架构
解耦推理:从实验室概念到行业标准 2024年,由北京大学金鑫-刘譞哲团队、加州大学圣地亚哥分校Hao AI Lab等机构提出的DistServe系统,首次系统性地阐述了“解耦推理”理念。在短短一年多时间里,这一理念迅速从学术概念演变为行业标准,被NVIDIA、vLLM等主流大模型推理框架采纳,标志着AI推理架构正迈向“模块化智能”的新阶段。 如果说“摩尔定律…