Transformer架构

  • 从生物进化到AI演进:开源加速与非线性跃迁的深层逻辑

    在科技发展的宏大叙事中,生物进化与人工智能的演进轨迹呈现出令人惊异的相似性。这种相似性不仅体现在表面模式上,更深入到两者共享的底层逻辑——试错、选择与适应性突破。本文将以Daniel Povey在MEET2026智能未来大会上的核心观点为线索,深入剖析AI发展的进化隐喻,探讨开源生态的关键作用,并展望下一代架构的探索路径。 **一、进化逻辑的深层映射:从生物…

    4天前
    300
  • DePass:统一特征归因框架,开启Transformer内部信息流无损分解新纪元

    随着大型语言模型(LLMs)在文本生成、逻辑推理、代码编程等复杂任务中展现出接近甚至超越人类的表现,AI研究社区正面临一个日益紧迫的挑战:我们如何理解这些“黑箱”模型内部究竟发生了什么?模型的输出决策究竟是基于哪些输入信息、经过哪些内部组件的加工而形成的?这一挑战,即AI模型的可解释性问题,已成为制约LLMs在医疗、金融、司法等高风险领域深度应用的关键瓶颈。…

    2025年12月1日
    300
  • Transformer架构深度解析:从“the cat sat on the mat”看大语言模型的内部运作机制

    当我们在聊天界面输入“the cat sat on the mat”并期待大语言模型生成下一个词时,背后实际上是一个由数十亿参数驱动的复杂计算过程。Transformer架构作为现代大语言模型的核心,其内部机制远不止简单的“模式匹配”,而是通过多层神经网络对语言结构进行深度建模。本文将以这个简单句子为例,深入剖析Transformer模型从输入到输出的完整处…

    2025年11月30日
    100
  • Depth Anything 3:以极简Transformer架构重塑3D视觉,单目深度估计迈向通用空间感知

    近期,字节跳动研究团队发布的Depth Anything 3(DA3)在计算机视觉领域引发了广泛关注。这项研究通过极简的架构设计,挑战了当前3D视觉研究中普遍存在的过度复杂化倾向,为单目深度估计技术开辟了新的可能性。 DA3的核心突破在于其方法论上的根本性简化。研究团队发现,要实现高质量的3D视觉感知,并不需要专门设计的复杂神经网络架构。相反,一个标准的Tr…

    2025年11月15日
    200