模型压缩
-
DragonMemory:序列维度压缩技术革新RAG系统,16倍压缩比突破本地部署瓶颈
在人工智能快速发展的浪潮中,检索增强生成(RAG)系统已成为连接大语言模型与外部知识库的关键桥梁。然而,随着应用场景的复杂化,上下文长度和内存成本问题日益凸显,成为制约RAG系统在资源受限环境中部署的主要障碍。传统解决方案多采用量化、剪枝等技术,但这些方法往往以牺牲语义精度为代价。近期,GitHub上出现的开源项目DragonMemory,以其创新的序列维度…
-
REAP框架:稀疏混合专家模型的动态瘦身革命与性能平衡的艺术
在人工智能模型规模不断膨胀的今天,稀疏混合专家模型(Sparse Mixture of Experts,SMoE)作为一种高效架构,通过动态路由机制将输入分配给少数专家处理,显著降低了计算成本。然而,这种架构面临一个根本性矛盾:虽然每次推理只需激活少量专家,但所有专家的参数都必须常驻内存,导致内存开销居高不下。这就像运营一个拥有数百名专家的咨询公司,每次项目…
-
QSVD:多模态大模型轻量化革命——联合低秩分解与量化技术突破
在多模态人工智能的快速发展浪潮中,视觉语言模型(Vision-Language Models, VLM)已成为连接计算机视觉与自然语言处理的核心桥梁。从图像描述生成、视觉问答到智能教育系统和交互式应用,这些模型让机器具备了“看懂世界、说人话”的能力。然而,这种强大的能力伴随着巨大的计算代价——模型参数动辄达到数百亿级别,导致显存占用巨大、推理速度缓慢,严重制…
-
3DGS压缩新范式:基于高斯混合简化的几何结构保持方法
在三维视觉领域,3D Gaussian Splatting(3DGS)作为近年来兴起的高效三维场景建模技术,通过大量各向异性高斯球的分布与渲染,实现了高质量的新视角合成。然而,其核心挑战在于高斯球的高度冗余性,这直接制约了模型的存储效率与渲染速度。传统压缩方法多采用基于重要性得分的剪枝策略,虽能减少高斯数量,但往往以破坏全局几何结构为代价,导致细节丢失或场景…
-
突破模型家族壁垒:Hugging Face GOLD技术实现跨分词器知识蒸馏革命
在人工智能模型部署与优化的前沿领域,模型压缩技术一直是平衡性能与效率的关键。传统知识蒸馏方法虽然能够将大型“教师”模型的知识迁移到小型“学生”模型中,但长期以来面临一个根本性限制:教师和学生模型必须使用相同的分词器。这一限制严重制约了技术应用的灵活性,使得不同模型家族之间的知识传递几乎不可能实现。 Hugging Face研究团队最新提出的GOLD(Gene…