Transformer
-
从万能钥匙到AI钥匙:谷歌创始人布林复盘技术决策与未来展望
在斯坦福大学的演讲中,谷歌联合创始人谢尔盖·布林以罕见的坦诚,回顾了谷歌从诞生到AI竞争中的关键转折点。这场演讲不仅是对一家科技巨头历史的梳理,更是对技术决策、创新节奏与产业趋势的深刻反思。 布林首先指出,谷歌的诞生源于一次“无心插柳”的创业。1995年,他与拉里·佩奇在斯坦福相遇,最初的目标是开发一个名为“BackRub”的搜索算法,希望通过链接分析评估网…
-
谷歌联合创始人谢尔盖·布林斯坦福对谈:AI浪潮下的学术基因、Transformer遗憾与未来大学形态
在斯坦福大学工程学院百年庆典的收官活动中,谷歌联合创始人谢尔盖·布林重返母校,与校长Jonathan Levin及工程学院院长Jennifer Widom展开了一场深度对话。这场对话不仅回顾了谷歌二十余年的创新历程,更触及了人工智能时代下学术界与产业界的核心命题——从Transformer论文的错失良机,到未来大学的形态演变,布林以亲历者视角提供了珍贵的一瞥…
-
深度解析Depth Anything 3:单Transformer统一3D视觉任务,字节跳动如何重塑几何感知新范式
在计算机视觉领域,3D重建与几何感知一直是核心挑战之一。传统方法往往需要针对不同任务设计专用模型,如单目深度估计、多视角重建、相机姿态估计等,这不仅增加了开发复杂度,也限制了模型的泛化能力与数据利用效率。近日,字节跳动Seed团队的Depth Anything 3(DA3)研究成果,以单一Transformer架构统一了多种3D视觉任务,在视觉几何基准上取得…
-
IGGT:统一Transformer突破3D感知瓶颈,实现几何重建与实例理解的首次融合
在人工智能领域,让机器像人类一样自然地理解三维世界的几何结构与语义内容,一直是极具挑战性的前沿课题。传统方法通常将3D重建(底层几何)与空间理解(高层语义)割裂处理,这种分离不仅导致错误在流程中累积,更严重限制了模型在复杂、动态场景中的泛化能力。近年来,一些新方法尝试将3D模型与特定的视觉语言模型(VLM)进行绑定,但这本质上是一种妥协:模型被限制在预设的语…