多token熵解码
-
掩码扩散语言模型:超越自回归范式,解锁推理与采样的新潜能
在自然语言处理领域,自回归(AR)语言模型长期占据主导地位,其从左到右顺序生成token的方式已成为标准范式。然而,这种单向生成机制在推理效率、并行化能力和任务适应性方面存在固有局限。近年来,掩码扩散语言模型(MDLM)作为一种新兴架构,通过随机遮蔽序列位置并学习填充被掩码区域,为语言建模提供了全新的视角。本文将从技术原理、性能表现、创新应用三个维度,深入分…
在自然语言处理领域,自回归(AR)语言模型长期占据主导地位,其从左到右顺序生成token的方式已成为标准范式。然而,这种单向生成机制在推理效率、并行化能力和任务适应性方面存在固有局限。近年来,掩码扩散语言模型(MDLM)作为一种新兴架构,通过随机遮蔽序列位置并学习填充被掩码区域,为语言建模提供了全新的视角。本文将从技术原理、性能表现、创新应用三个维度,深入分…