稀疏混合专家模型
-
REAP框架:稀疏混合专家模型的动态瘦身革命与性能平衡的艺术
在人工智能模型规模不断膨胀的今天,稀疏混合专家模型(Sparse Mixture of Experts,SMoE)作为一种高效架构,通过动态路由机制将输入分配给少数专家处理,显著降低了计算成本。然而,这种架构面临一个根本性矛盾:虽然每次推理只需激活少量专家,但所有专家的参数都必须常驻内存,导致内存开销居高不下。这就像运营一个拥有数百名专家的咨询公司,每次项目…
在人工智能模型规模不断膨胀的今天,稀疏混合专家模型(Sparse Mixture of Experts,SMoE)作为一种高效架构,通过动态路由机制将输入分配给少数专家处理,显著降低了计算成本。然而,这种架构面临一个根本性矛盾:虽然每次推理只需激活少量专家,但所有专家的参数都必须常驻内存,导致内存开销居高不下。这就像运营一个拥有数百名专家的咨询公司,每次项目…